import torch from torch import nn, Tensor import os from typing import List, Tuple, Union, Callable from functools import partial from .utils import _init_weights from . import encoder from . import encoder_decoder from .encoder import _timm_encoder curr_dir = os.path.abspath(os.path.dirname(__file__)) class Regressor(nn.Module): def __init__(self, backbone: nn.Module) -> None: super().__init__() self.backbone = backbone self.reduction = backbone.reduction self.regressor = nn.Sequential( nn.Conv2d(backbone.channels, 1, kernel_size=1), nn.ReLU(inplace=True), ) self.regressor.apply(_init_weights) self.bins = None self.anchor_points = None def forward(self, x: Tensor) -> Tensor: x = self.backbone(x) x = self.regressor(x) return x class Classifier(nn.Module): def __init__( self, backbone: nn.Module, bins: List[Tuple[float, float]], anchor_points: List[float], ) -> None: super().__init__() self.backbone = backbone self.reduction = backbone.reduction assert len(bins) == len(anchor_points), f"Expected bins and anchor_points to have the same length, got {len(bins)} and {len(anchor_points)}" assert all(len(b) == 2 for b in bins), f"Expected bins to be a list of tuples of length 2, got {bins}" assert all(bin[0] <= p <= bin[1] for bin, p in zip(bins, anchor_points)), f"Expected anchor_points to be within the range of the corresponding bin, got {bins} and {anchor_points}" self.bins = bins self.anchor_points = torch.tensor(anchor_points, dtype=torch.float32, requires_grad=False).view(1, -1, 1, 1) if backbone.channels > 512: self.classifier = nn.Sequential( nn.Conv2d(backbone.channels, 512, kernel_size=1), # serves as a linear layer for feature vectors at each pixel nn.ReLU(inplace=True), nn.Conv2d(512, len(self.bins), kernel_size=1), ) else: self.classifier = nn.Conv2d(backbone.channels, len(self.bins), kernel_size=1) self.classifier.apply(_init_weights) def forward(self, x: Tensor) -> Union[Tensor, Tuple[Tensor, Tensor]]: x = self.backbone(x) x = self.classifier(x) # shape (B, C, H, W), where C = len(bins), x is the logits probs = x.softmax(dim=1) # shape (B, C, H, W) exp = (probs * self.anchor_points.to(x.device)).sum(dim=1, keepdim=True) # shape (B, 1, H, W) if self.training: return x, exp else: return exp def _get_backbone(backbone: str, input_size: int, reduction: int) -> Callable: assert "clip" not in backbone, f"This function does not support CLIP model, got {backbone}" if backbone in ["vit_b_16", "vit_b_32", "vit_l_16", "vit_l_32", "vit_h_14"]: return partial(getattr(encoder, backbone), image_size=input_size, reduction=reduction) elif backbone in ["vgg11", "vgg11_bn", "vgg13", "vgg13_bn", "vgg16", "vgg16_bn", "vgg19", "vgg19_bn"]: return partial(getattr(encoder, backbone), reduction=reduction) elif backbone in ["vgg11_ae", "vgg11_bn_ae", "vgg13_ae", "vgg13_bn_ae", "vgg16_ae", "vgg16_bn_ae", "vgg19_ae", "vgg19_bn_ae"]: return partial(getattr(encoder_decoder, backbone), reduction=reduction) elif backbone in ["resnet18_ae", "resnet34_ae", "resnet50_ae", "resnet101_ae", "resnet152_ae"]: return partial(getattr(encoder_decoder, backbone), reduction=reduction) elif backbone in ["cannet", "cannet_bn", "csrnet", "csrnet_bn"]: return partial(getattr(encoder_decoder, backbone), reduction=reduction) else: return partial(_timm_encoder, backbone=backbone, reduction=reduction) def _regressor( backbone: str, input_size: int, reduction: int, ) -> Regressor: backbone = _get_backbone(backbone.lower(), input_size, reduction) return Regressor(backbone()) def _classifier( backbone: nn.Module, input_size: int, reduction: int, bins: List[Tuple[float, float]], anchor_points: List[float], ) -> Classifier: backbone = _get_backbone(backbone.lower(), input_size, reduction) return Classifier(backbone(), bins, anchor_points)