import math from collections import OrderedDict from functools import partial from typing import Any, Callable, List, NamedTuple, Optional, Tuple import torch from torch import nn, Tensor import torch.nn.functional as F from torch.hub import load_state_dict_from_url from einops import rearrange from ..utils import Conv2dNormActivation, MLP from ..utils import _log_api_usage_once weights = { "vit_b_16": "https://download.pytorch.org/models/vit_b_16-c867db91.pth", "vit_b_32": "https://download.pytorch.org/models/vit_b_32-d86f8d99.pth", "vit_l_16": "https://download.pytorch.org/models/vit_l_16-852ce7e3.pth", "vit_l_32": "https://download.pytorch.org/models/vit_l_32-c7638314.pth", "vit_h_14": "https://download.pytorch.org/models/vit_h_14-6kbcf7eb.pth", } class ConvStemConfig(NamedTuple): out_channels: int kernel_size: int stride: int norm_layer: Callable[..., nn.Module] = nn.BatchNorm2d activation_layer: Callable[..., nn.Module] = nn.ReLU class MLPBlock(MLP): """Transformer MLP block.""" _version = 2 def __init__(self, in_dim: int, mlp_dim: int, dropout: float): super().__init__(in_dim, [mlp_dim, in_dim], activation_layer=nn.GELU, inplace=None, dropout=dropout) for m in self.modules(): if isinstance(m, nn.Linear): nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.normal_(m.bias, std=1e-6) def _load_from_state_dict( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, ): version = local_metadata.get("version", None) if version is None or version < 2: # Replacing legacy MLPBlock with MLP. See https://github.com/pytorch/vision/pull/6053 for i in range(2): for type in ["weight", "bias"]: old_key = f"{prefix}linear_{i+1}.{type}" new_key = f"{prefix}{3*i}.{type}" if old_key in state_dict: state_dict[new_key] = state_dict.pop(old_key) super()._load_from_state_dict( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, ) class EncoderBlock(nn.Module): """Transformer encoder block.""" def __init__( self, num_heads: int, hidden_dim: int, mlp_dim: int, dropout: float, attention_dropout: float, norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6), ): super().__init__() self.num_heads = num_heads # Attention block self.ln_1 = norm_layer(hidden_dim) self.self_attention = nn.MultiheadAttention(hidden_dim, num_heads, dropout=attention_dropout, batch_first=True) self.dropout = nn.Dropout(dropout) # MLP block self.ln_2 = norm_layer(hidden_dim) self.mlp = MLPBlock(hidden_dim, mlp_dim, dropout) def forward(self, input: Tensor): torch._assert(input.dim() == 3, f"Expected (batch_size, seq_length, hidden_dim) got {input.shape}") x = self.ln_1(input) x, _ = self.self_attention(x, x, x, need_weights=False) x = self.dropout(x) x = x + input y = self.ln_2(x) y = self.mlp(y) return x + y class Encoder(nn.Module): """Transformer Model Encoder for sequence to sequence translation.""" def __init__( self, num_h_patches: int, num_w_patches: int, num_layers: int, num_heads: int, hidden_dim: int, mlp_dim: int, dropout: float, attention_dropout: float, norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6), ): super().__init__() self.num_h_patches = num_h_patches self.num_w_patches = num_w_patches # Note that batch_size is on the first dim because # we have batch_first=True in nn.MultiAttention() by default seq_length = num_h_patches * num_w_patches + 1 # +1 for the class token self.pos_embedding = nn.Parameter(torch.empty(1, seq_length, hidden_dim).normal_(std=0.02)) # from BERT self.dropout = nn.Dropout(dropout) layers: OrderedDict[str, nn.Module] = OrderedDict() for i in range(num_layers): layers[f"encoder_layer_{i}"] = EncoderBlock( num_heads, hidden_dim, mlp_dim, dropout, attention_dropout, norm_layer, ) self.layers = nn.Sequential(layers) self.ln = norm_layer(hidden_dim) def _get_pos_embedding(self, n_h: int, n_w: int) -> Tensor: if n_h == self.num_h_patches and n_w == self.num_w_patches: return self.pos_embedding else: pos_embedding = self.pos_embedding[:, 1:, :] pos_embedding = rearrange(pos_embedding, "1 (h w) d -> 1 d h w", h=self.num_h_patches, w=self.num_w_patches) pos_embedding = F.interpolate(pos_embedding, size=(n_h, n_w), mode="bicubic") pos_embedding = rearrange(pos_embedding, "1 d h w -> 1 (h w) d") return torch.cat([self.pos_embedding[:, :1, :], pos_embedding], dim=1) def forward(self, input: Tensor, n_h: int, n_w: int) -> Tensor: torch._assert(input.dim() == 3, f"Expected (batch_size, seq_length, hidden_dim) got {input.shape}") input = input + self._get_pos_embedding(n_h, n_w) return self.ln(self.layers(self.dropout(input))) class VisionTransformer(nn.Module): """Vision Transformer as a feature extractor.""" def __init__( self, image_size: int, patch_size: int, num_layers: int, num_heads: int, hidden_dim: int, mlp_dim: int, dropout: float = 0.0, attention_dropout: float = 0.0, # num_classes: int = 1000, # No need for the classification head as we only need the features reduction: Optional[int] = None, representation_size: Optional[int] = None, norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6), conv_stem_configs: Optional[List[ConvStemConfig]] = None, ): super().__init__() _log_api_usage_once(self) torch._assert(image_size % patch_size == 0, "Input shape indivisible by patch size!") self.image_size = image_size self.patch_size = patch_size self.hidden_dim = hidden_dim self.mlp_dim = mlp_dim self.attention_dropout = attention_dropout self.dropout = dropout # self.num_classes = num_classes self.representation_size = representation_size self.norm_layer = norm_layer if conv_stem_configs is not None: # As per https://arxiv.org/abs/2106.14881 seq_proj = nn.Sequential() prev_channels = 3 for i, conv_stem_layer_config in enumerate(conv_stem_configs): seq_proj.add_module( f"conv_bn_relu_{i}", Conv2dNormActivation( in_channels=prev_channels, out_channels=conv_stem_layer_config.out_channels, kernel_size=conv_stem_layer_config.kernel_size, stride=conv_stem_layer_config.stride, norm_layer=conv_stem_layer_config.norm_layer, activation_layer=conv_stem_layer_config.activation_layer, ), ) prev_channels = conv_stem_layer_config.out_channels seq_proj.add_module( "conv_last", nn.Conv2d(in_channels=prev_channels, out_channels=hidden_dim, kernel_size=1) ) self.conv_proj: nn.Module = seq_proj else: self.conv_proj = nn.Conv2d( in_channels=3, out_channels=hidden_dim, kernel_size=patch_size, stride=patch_size ) seq_length = (image_size // patch_size) ** 2 # Add a class token self.class_token = nn.Parameter(torch.zeros(1, 1, hidden_dim)) seq_length += 1 self.encoder = Encoder( image_size // patch_size, image_size // patch_size, num_layers, num_heads, hidden_dim, mlp_dim, dropout, attention_dropout, norm_layer, ) self.seq_length = seq_length # heads_layers: OrderedDict[str, nn.Module] = OrderedDict() # if representation_size is None: # heads_layers["head"] = nn.Linear(hidden_dim, num_classes) # else: # heads_layers["pre_logits"] = nn.Linear(hidden_dim, representation_size) # heads_layers["act"] = nn.Tanh() # heads_layers["head"] = nn.Linear(representation_size, num_classes) # self.heads = nn.Sequential(heads_layers) if isinstance(self.conv_proj, nn.Conv2d): # Init the patchify stem fan_in = self.conv_proj.in_channels * self.conv_proj.kernel_size[0] * self.conv_proj.kernel_size[1] nn.init.trunc_normal_(self.conv_proj.weight, std=math.sqrt(1 / fan_in)) if self.conv_proj.bias is not None: nn.init.zeros_(self.conv_proj.bias) elif self.conv_proj.conv_last is not None and isinstance(self.conv_proj.conv_last, nn.Conv2d): # Init the last 1x1 conv of the conv stem nn.init.normal_( self.conv_proj.conv_last.weight, mean=0.0, std=math.sqrt(2.0 / self.conv_proj.conv_last.out_channels) ) if self.conv_proj.conv_last.bias is not None: nn.init.zeros_(self.conv_proj.conv_last.bias) # if hasattr(self.heads, "pre_logits") and isinstance(self.heads.pre_logits, nn.Linear): # fan_in = self.heads.pre_logits.in_features # nn.init.trunc_normal_(self.heads.pre_logits.weight, std=math.sqrt(1 / fan_in)) # nn.init.zeros_(self.heads.pre_logits.bias) # if isinstance(self.heads.head, nn.Linear): # nn.init.zeros_(self.heads.head.weight) # nn.init.zeros_(self.heads.head.bias) self.encoder_reduction = self.patch_size self.reduction = self.encoder_reduction if reduction is None else reduction self.channels = hidden_dim def _process_input(self, x: Tensor) -> Tuple[Tensor, int, int, int]: # (n, c, h, w) -> (n, hidden_dim, n_h, n_w) x = self.conv_proj(x) n, _, n_h, n_w = x.shape # (n, hidden_dim, n_h, n_w) -> (n, hidden_dim, (n_h * n_w)) x = x.reshape(n, self.hidden_dim, n_h * n_w) # (n, hidden_dim, (n_h * n_w)) -> (n, (n_h * n_w), hidden_dim) # The self attention layer expects inputs in the format (N, S, E) # where S is the source sequence length, N is the batch size, E is the # embedding dimension x = x.permute(0, 2, 1) return x, n, n_h, n_w def forward(self, x: Tensor) -> Tensor: # Reshape and permute the input tensor x, n, n_h, n_w = self._process_input(x) # Expand the class token to the full batch batch_class_token = self.class_token.expand(n, -1, -1) x = torch.cat([batch_class_token, x], dim=1) x = self.encoder(x, n_h, n_w) # Allows input image to be of any size. # Classifier "token" as used by standard language architectures # x = x[:, 0] # x = self.heads(x) x = x[:, 1:, :] x = rearrange(x, "n (h w) d -> n d h w", h=n_h, w=n_w) if self.encoder_reduction != self.reduction: x = F.interpolate(x, scale_factor=self.encoder_reduction / self.reduction, mode="bilinear") return x # To be consistent with timm models def _vision_transformer( patch_size: int, num_layers: int, num_heads: int, hidden_dim: int, mlp_dim: int, weights: str, **kwargs: Any, ) -> VisionTransformer: image_size = kwargs.pop("image_size", 224) model = VisionTransformer( image_size=image_size, patch_size=patch_size, num_layers=num_layers, num_heads=num_heads, hidden_dim=hidden_dim, mlp_dim=mlp_dim, **kwargs, ) if weights is not None: weights = load_state_dict_from_url(weights, progress=kwargs.get("progress", True)) missing_keys, unexpected_keys = model.load_state_dict(weights, strict=False) if len(missing_keys) > 0: print(f"Missing keys: {missing_keys}") if len(unexpected_keys) > 0: print(f"Unexpected keys: {unexpected_keys}") return model def interpolate_embeddings( image_size: int, patch_size: int, pos_embedding: Tensor, interpolation_mode: str = "bicubic", ) -> Tensor: """This function helps interpolate positional embeddings during checkpoint loading, especially when you want to apply a pre-trained model on images with different resolution. Args: image_size (int): Image size of the new model. patch_size (int): Patch size of the new model. model_state (OrderedDict[str, Tensor]): State dict of the pre-trained model. interpolation_mode (str): The algorithm used for upsampling. Default: bicubic. reset_heads (bool): If true, not copying the state of heads. Default: False. Returns: Tensor: The interpolated positional embedding. """ # Shape of pos_embedding is (1, seq_length, hidden_dim) n, seq_length, hidden_dim = pos_embedding.shape if n != 1: raise ValueError(f"Unexpected position embedding shape: {pos_embedding.shape}") new_seq_length = (image_size // patch_size) ** 2 + 1 # Need to interpolate the weights for the position embedding. # We do this by reshaping the positions embeddings to a 2d grid, performing # an interpolation in the (h, w) space and then reshaping back to a 1d grid. if new_seq_length != seq_length: # The class token embedding shouldn't be interpolated, so we split it up. seq_length -= 1 new_seq_length -= 1 pos_embedding_token = pos_embedding[:, :1, :] pos_embedding_img = pos_embedding[:, 1:, :] # (1, seq_length, hidden_dim) -> (1, hidden_dim, seq_length) pos_embedding_img = pos_embedding_img.permute(0, 2, 1) seq_length_1d = int(math.sqrt(seq_length)) if seq_length_1d * seq_length_1d != seq_length: raise ValueError( f"seq_length is not a perfect square! Instead got seq_length_1d * seq_length_1d = {seq_length_1d * seq_length_1d } and seq_length = {seq_length}" ) # (1, hidden_dim, seq_length) -> (1, hidden_dim, seq_l_1d, seq_l_1d) pos_embedding_img = pos_embedding_img.reshape(1, hidden_dim, seq_length_1d, seq_length_1d) new_seq_length_1d = image_size // patch_size # Perform interpolation. # (1, hidden_dim, seq_l_1d, seq_l_1d) -> (1, hidden_dim, new_seq_l_1d, new_seq_l_1d) new_pos_embedding_img = nn.functional.interpolate( pos_embedding_img, size=new_seq_length_1d, mode=interpolation_mode, ) # (1, hidden_dim, new_seq_l_1d, new_seq_l_1d) -> (1, hidden_dim, new_seq_length) new_pos_embedding_img = new_pos_embedding_img.reshape(1, hidden_dim, new_seq_length) # (1, hidden_dim, new_seq_length) -> (1, new_seq_length, hidden_dim) new_pos_embedding_img = new_pos_embedding_img.permute(0, 2, 1) new_pos_embedding = torch.cat([pos_embedding_token, new_pos_embedding_img], dim=1) return new_pos_embedding return pos_embedding def vit_b_16( image_size: int = 224, reduction: int = 16, **kwargs: Any, ) -> VisionTransformer: vit = _vision_transformer( patch_size=16, num_layers=12, num_heads=12, hidden_dim=768, mlp_dim=3072, weights=weights["vit_b_16"], reduction=reduction, **kwargs, ) if image_size != 224: vit.image_size = image_size new_pos_embedding = interpolate_embeddings(image_size, 16, vit.state_dict()["encoder.pos_embedding"], "bicubic") vit.encoder.pos_embedding = nn.Parameter(new_pos_embedding, requires_grad=True) return vit def vit_b_32( image_size: int = 224, reduction: int = 32, **kwargs: Any, ) -> VisionTransformer: vit = _vision_transformer( patch_size=32, num_layers=12, num_heads=12, hidden_dim=768, mlp_dim=3072, weights=weights["vit_b_32"], reduction=reduction, **kwargs, ) if image_size != 224: vit.image_size = image_size new_pos_embedding = interpolate_embeddings(image_size, 32, vit.state_dict()["encoder.pos_embedding"], "bicubic") vit.encoder.pos_embedding = nn.Parameter(new_pos_embedding, requires_grad=True) return vit def vit_l_16( image_size: int = 224, reduction: int = 16, **kwargs: Any, ) -> VisionTransformer: vit = _vision_transformer( patch_size=16, num_layers=24, num_heads=16, hidden_dim=1024, mlp_dim=4096, weights=weights["vit_l_16"], reduction=reduction, **kwargs, ) if image_size != 224: vit.image_size = image_size new_pos_embedding = interpolate_embeddings(image_size, 16, vit.state_dict()["encoder.pos_embedding"], "bicubic") vit.encoder.pos_embedding = nn.Parameter(new_pos_embedding, requires_grad=True) return vit def vit_l_32( image_size: int = 224, reduction: int = 32, **kwargs: Any, ) -> VisionTransformer: vit = _vision_transformer( patch_size=32, num_layers=24, num_heads=16, hidden_dim=1024, mlp_dim=4096, weights=weights["vit_l_32"], reduction=reduction, **kwargs, ) if image_size != 224: vit.image_size = image_size new_pos_embedding = interpolate_embeddings(image_size, 32, vit.state_dict()["encoder.pos_embedding"], "bicubic") vit.encoder.pos_embedding = nn.Parameter(new_pos_embedding, requires_grad=True) return vit def vit_h_14( image_size: int = 224, reduction: int = 14, **kwargs: Any, ) -> VisionTransformer: vit = _vision_transformer( patch_size=14, num_layers=32, num_heads=16, hidden_dim=1280, mlp_dim=5120, weights=weights["vit_h_14"], reduction=reduction, **kwargs, ) if image_size != 224: vit.image_size = image_size new_pos_embedding = interpolate_embeddings(image_size, 14, vit.state_dict()["encoder.pos_embedding"], "bicubic") vit.encoder.pos_embedding = nn.Parameter(new_pos_embedding, requires_grad=True) return vit