import torch from torch import nn, Tensor import torch.nn.functional as F from functools import partial from typing import Callable, Optional, Sequence, Tuple, Union, Any, List, TypeVar, List from types import FunctionType from itertools import repeat import warnings import os from collections.abc import Iterable V = TypeVar("V") curr_dir = os.path.dirname(os.path.abspath(__file__)) vgg_urls = { "vgg11": "https://download.pytorch.org/models/vgg11-8a719046.pth", "vgg11_bn": "https://download.pytorch.org/models/vgg11_bn-6002323d.pth", "vgg13": "https://download.pytorch.org/models/vgg13-19584684.pth", "vgg13_bn": "https://download.pytorch.org/models/vgg13_bn-abd245e5.pth", "vgg16": "https://download.pytorch.org/models/vgg16-397923af.pth", "vgg16_bn": "https://download.pytorch.org/models/vgg16_bn-6c64b313.pth", "vgg19": "https://download.pytorch.org/models/vgg19-dcbb9e9d.pth", "vgg19_bn": "https://download.pytorch.org/models/vgg19_bn-c79401a0.pth", } vgg_cfgs = { "A": [64, "M", 128, "M", 256, 256, "M", 512, 512, "M", 512, 512], "B": [64, 64, "M", 128, 128, "M", 256, 256, "M", 512, 512, "M", 512, 512], "D": [64, 64, "M", 128, 128, "M", 256, 256, 256, "M", 512, 512, 512, "M", 512, 512, 512], "E": [64, 64, "M", 128, 128, "M", 256, 256, 256, 256, "M", 512, 512, 512, 512, "M", 512, 512, 512, 512] } def _log_api_usage_once(obj: Any) -> None: """ Logs API usage(module and name) within an organization. In a large ecosystem, it's often useful to track the PyTorch and TorchVision APIs usage. This API provides the similar functionality to the logging module in the Python stdlib. It can be used for debugging purpose to log which methods are used and by default it is inactive, unless the user manually subscribes a logger via the `SetAPIUsageLogger method `_. Please note it is triggered only once for the same API call within a process. It does not collect any data from open-source users since it is no-op by default. For more information, please refer to * PyTorch note: https://pytorch.org/docs/stable/notes/large_scale_deployments.html#api-usage-logging; * Logging policy: https://github.com/pytorch/vision/issues/5052; Args: obj (class instance or method): an object to extract info from. """ module = obj.__module__ if not module.startswith("torchvision"): module = f"torchvision.internal.{module}" name = obj.__class__.__name__ if isinstance(obj, FunctionType): name = obj.__name__ torch._C._log_api_usage_once(f"{module}.{name}") def _make_ntuple(x: Any, n: int) -> Tuple[Any, ...]: """ Make n-tuple from input x. If x is an iterable, then we just convert it to tuple. Otherwise, we will make a tuple of length n, all with value of x. reference: https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/utils.py#L8 Args: x (Any): input value n (int): length of the resulting tuple """ if isinstance(x, Iterable): return tuple(x) return tuple(repeat(x, n)) class ConvNormActivation(torch.nn.Sequential): def __init__( self, in_channels: int, out_channels: int, kernel_size: Union[int, Tuple[int, ...]] = 3, stride: Union[int, Tuple[int, ...]] = 1, padding: Optional[Union[int, Tuple[int, ...], str]] = None, groups: int = 1, norm_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.BatchNorm2d, activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU, dilation: Union[int, Tuple[int, ...]] = 1, inplace: Optional[bool] = True, bias: Optional[bool] = None, conv_layer: Callable[..., torch.nn.Module] = torch.nn.Conv2d, ) -> None: if padding is None: if isinstance(kernel_size, int) and isinstance(dilation, int): padding = (kernel_size - 1) // 2 * dilation else: _conv_dim = len(kernel_size) if isinstance(kernel_size, Sequence) else len(dilation) kernel_size = _make_ntuple(kernel_size, _conv_dim) dilation = _make_ntuple(dilation, _conv_dim) padding = tuple((kernel_size[i] - 1) // 2 * dilation[i] for i in range(_conv_dim)) if bias is None: bias = norm_layer is None layers = [ conv_layer( in_channels, out_channels, kernel_size, stride, padding, dilation=dilation, groups=groups, bias=bias, ) ] if norm_layer is not None: layers.append(norm_layer(out_channels)) if activation_layer is not None: params = {} if inplace is None else {"inplace": inplace} layers.append(activation_layer(**params)) super().__init__(*layers) _log_api_usage_once(self) self.out_channels = out_channels if self.__class__ == ConvNormActivation: warnings.warn( "Don't use ConvNormActivation directly, please use Conv2dNormActivation and Conv3dNormActivation instead." ) class Conv2dNormActivation(ConvNormActivation): """ Configurable block used for Convolution2d-Normalization-Activation blocks. Args: in_channels (int): Number of channels in the input image out_channels (int): Number of channels produced by the Convolution-Normalization-Activation block kernel_size: (int, optional): Size of the convolving kernel. Default: 3 stride (int, optional): Stride of the convolution. Default: 1 padding (int, tuple or str, optional): Padding added to all four sides of the input. Default: None, in which case it will be calculated as ``padding = (kernel_size - 1) // 2 * dilation`` groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolution layer. If ``None`` this layer won't be used. Default: ``torch.nn.BatchNorm2d`` activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer won't be used. Default: ``torch.nn.ReLU`` dilation (int): Spacing between kernel elements. Default: 1 inplace (bool): Parameter for the activation layer, which can optionally do the operation in-place. Default ``True`` bias (bool, optional): Whether to use bias in the convolution layer. By default, biases are included if ``norm_layer is None``. """ def __init__( self, in_channels: int, out_channels: int, kernel_size: Union[int, Tuple[int, int]] = 3, stride: Union[int, Tuple[int, int]] = 1, padding: Optional[Union[int, Tuple[int, int], str]] = None, groups: int = 1, norm_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.BatchNorm2d, activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU, dilation: Union[int, Tuple[int, int]] = 1, inplace: Optional[bool] = True, bias: Optional[bool] = None, ) -> None: super().__init__( in_channels, out_channels, kernel_size, stride, padding, groups, norm_layer, activation_layer, dilation, inplace, bias, torch.nn.Conv2d, ) class MLP(torch.nn.Sequential): """This block implements the multi-layer perceptron (MLP) module. Args: in_channels (int): Number of channels of the input hidden_channels (List[int]): List of the hidden channel dimensions norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the linear layer. If ``None`` this layer won't be used. Default: ``None`` activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the linear layer. If ``None`` this layer won't be used. Default: ``torch.nn.ReLU`` inplace (bool, optional): Parameter for the activation layer, which can optionally do the operation in-place. Default is ``None``, which uses the respective default values of the ``activation_layer`` and Dropout layer. bias (bool): Whether to use bias in the linear layer. Default ``True`` dropout (float): The probability for the dropout layer. Default: 0.0 """ def __init__( self, in_channels: int, hidden_channels: List[int], norm_layer: Optional[Callable[..., torch.nn.Module]] = None, activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU, inplace: Optional[bool] = None, bias: bool = True, dropout: float = 0.0, ): # The addition of `norm_layer` is inspired from the implementation of TorchMultimodal: # https://github.com/facebookresearch/multimodal/blob/5dec8a/torchmultimodal/modules/layers/mlp.py params = {} if inplace is None else {"inplace": inplace} layers = [] in_dim = in_channels for hidden_dim in hidden_channels[:-1]: layers.append(torch.nn.Linear(in_dim, hidden_dim, bias=bias)) if norm_layer is not None: layers.append(norm_layer(hidden_dim)) layers.append(activation_layer(**params)) layers.append(torch.nn.Dropout(dropout, **params)) in_dim = hidden_dim layers.append(torch.nn.Linear(in_dim, hidden_channels[-1], bias=bias)) layers.append(torch.nn.Dropout(dropout, **params)) super().__init__(*layers) _log_api_usage_once(self) def conv3x3( in_channels: int, out_channels: int, stride: int = 1, groups: int = 1, dilation: int = 1, ) -> nn.Conv2d: """3x3 convolution with padding""" return nn.Conv2d( in_channels, out_channels, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation, ) def conv1x1(in_channels: int, out_channels: int, stride: int = 1) -> nn.Conv2d: """1x1 convolution""" return nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): expansion: int = 1 def __init__( self, in_channels: int, out_channels: int, stride: int = 1, groups: int = 1, base_width: int = 64, dilation: int = 1, norm_layer: Optional[Callable[..., nn.Module]] = None, **kwargs: Any, ) -> None: super().__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d if groups != 1 or base_width != 64: raise ValueError("BasicBlock only supports groups=1 and base_width=64") if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(in_channels, out_channels, stride) self.bn1 = norm_layer(out_channels) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(out_channels, out_channels) self.bn2 = norm_layer(out_channels) self.stride = stride if in_channels != out_channels: self.downsample = nn.Sequential( conv1x1(in_channels, out_channels), nn.BatchNorm2d(out_channels), ) else: self.downsample = nn.Identity() def forward(self, x: Tensor) -> Tensor: identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out += self.downsample(identity) out = self.relu(out) return out class Bottleneck(nn.Module): # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2) # while original implementation places the stride at the first 1x1 convolution(self.conv1) # according to "Deep residual learning for image recognition" https://arxiv.org/abs/1512.03385. # This variant is also known as ResNet V1.5 and improves accuracy according to # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch. def __init__( self, in_channels: int, out_channels: int, stride: int = 1, groups: int = 1, base_width: int = 64, dilation: int = 1, expansion: int = 4, norm_layer: Optional[Callable[..., nn.Module]] = None, **kwargs: Any, ) -> None: super().__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d width = int(out_channels * (base_width / 64.0)) * groups self.expansion = expansion # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(in_channels, width) self.bn1 = norm_layer(width) self.conv2 = conv3x3(width, width, stride, groups, dilation) self.bn2 = norm_layer(width) self.conv3 = conv1x1(width, out_channels * self.expansion) self.bn3 = norm_layer(out_channels * self.expansion) self.relu = nn.ReLU(inplace=True) self.stride = stride if in_channels != out_channels: self.downsample = nn.Sequential( conv1x1(in_channels, out_channels), nn.BatchNorm2d(out_channels), ) else: self.downsample = nn.Identity() def forward(self, x: Tensor) -> Tensor: identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) out += self.downsample(identity) out = self.relu(out) return out def _init_weights(model: nn.Module) -> None: for m in model.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") if m.bias is not None: nn.init.constant_(m.bias, 0.) elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1.) if m.bias is not None: nn.init.constant_(m.bias, 0.) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, std=0.01) if m.bias is not None: nn.init.constant_(m.bias, 0.) class Upsample(nn.Module): def __init__( self, size: Union[int, Tuple[int, int]] = None, scale_factor: Union[float, Tuple[float, float]] = None, mode: str = "nearest", align_corners: bool = False, antialias: bool = False, ) -> None: super().__init__() self.interpolate = partial( F.interpolate, size=size, scale_factor=scale_factor, mode=mode, align_corners=align_corners, antialias=antialias, ) def forward(self, x: Tensor) -> Tensor: return self.interpolate(x) def make_vgg_layers(cfg: List[Union[str, int]], in_channels: int = 3, batch_norm: bool = False, dilation: int = 1) -> nn.Sequential: layers = [] for v in cfg: if v == "M": layers += [nn.MaxPool2d(kernel_size=2, stride=2)] elif v == "U": layers += [Upsample(scale_factor=2, mode="bilinear")] else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=dilation, dilation=dilation) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v return nn.Sequential(*layers) def make_resnet_layers( block: Union[BasicBlock, Bottleneck], cfg: List[Union[int, str]], in_channels: int, dilation: int = 1, expansion: int = 1, ) -> nn.Sequential: layers = [] for v in cfg: if v == "U": layers.append(Upsample(scale_factor=2, mode="bilinear")) else: layers.append(block( in_channels=in_channels, out_channels=v, dilation=dilation, expansion=expansion, )) in_channels = v layers = nn.Sequential(*layers) layers.apply(_init_weights) return layers