File size: 2,950 Bytes
d74fb71
 
 
 
a619426
d74fb71
 
 
 
 
 
 
 
 
 
 
ae714e8
d74fb71
4e18b30
 
ae714e8
 
 
 
 
 
 
 
a619426
 
 
 
 
 
 
 
 
 
 
 
 
d74fb71
 
 
 
 
a619426
d74fb71
064bcd7
d74fb71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a619426
 
d74fb71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a619426
d74fb71
 
 
a619426
d74fb71
 
 
 
 
 
a619426
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import gradio as gr
import os
import time

from langchain.document_loaders import UnstructuredMarkdownLoader

from langchain.text_splitter import CharacterTextSplitter

from langchain.llms import OpenAI

from langchain.embeddings import OpenAIEmbeddings


from langchain.vectorstores import Chroma

from langchain.chains import ConversationalRetrievalChain
from langchain.prompts.prompt import PromptTemplate

os.environ['OPENAI_API_KEY'] = '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'

_template = """Assume you are He Yingxu, please complete the following conversations:
Chat History:
{chat_history}
Follow Up Input: {question}
"""

CUSTOM_QUESTION_PROMPT = PromptTemplate.from_template(_template)

loader = UnstructuredMarkdownLoader('docs/resume.md')
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
db = Chroma.from_documents(texts, embeddings)
retriever = db.as_retriever()
qa = ConversationalRetrievalChain.from_llm(
    llm=OpenAI(temperature=0.3),
    retriever=retriever,
    condense_question_prompt=CUSTOM_QUESTION_PROMPT,
    return_source_documents=False)


def add_text(history, text):
    history = history + [(text, None)]
    return history, ""


def bot(history):
    print(history)
    response = infer(history[-1][0], history)
    history[-1][1] = ""
    
    for character in response:     
        history[-1][1] += character
        time.sleep(0.05)
        yield history
    

def infer(question, history):
    
    res = []
    for human, ai in history[:-1]:
        pair = (human, ai)
        res.append(pair)
    
    chat_history = res
    #print(chat_history)
    query = question
    result = qa({"question": query, "chat_history": chat_history})
    #print(result)
    return result["answer"]


css = """
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""

title = """
<div style="text-align: center;max-width: 700px;">
    <h1>Chat with PDF • OpenAI</h1>
    <p style="text-align: center;">Upload a .PDF from your computer, click the "Load PDF to LangChain" button, <br />
    when everything is ready, you can start asking questions about the pdf ;) <br />
    This version is set to store chat history, and uses OpenAI as LLM, don't forget to copy/paste your OpenAI API key</p>
</div>
"""


with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.HTML(title)

        chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
        question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
        submit_btn = gr.Button("Send Message")

    question.submit(add_text, [chatbot, question], [chatbot, question]).then(
        bot, chatbot, chatbot
    )
    submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(
        bot, chatbot, chatbot)

demo.launch()