Yiqin's picture
init
6ef31de
raw
history blame
6.64 kB
"""This module provides a ChatGPT-compatible Restful API for chat completion.
Usage:
python3 -m fastchat.serve.api
Reference: https://platform.openai.com/docs/api-reference/chat/create
"""
import asyncio
from typing import Union, Dict, List, Any
import argparse
import json
import logging
import fastapi
from fastapi.middleware.cors import CORSMiddleware
import httpx
import uvicorn
from pydantic import BaseSettings
from fastchat.protocol.chat_completion import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatMessage,
ChatCompletionResponseChoice,
)
from fastchat.conversation import get_default_conv_template, SeparatorStyle
from fastchat.serve.inference import compute_skip_echo_len
logger = logging.getLogger(__name__)
class AppSettings(BaseSettings):
# The address of the model controller.
FASTCHAT_CONTROLLER_URL: str = "http://localhost:21001"
app_settings = AppSettings()
app = fastapi.FastAPI()
headers = {"User-Agent": "FastChat API Server"}
@app.get("/v1/models")
async def show_available_models():
controller_url = app_settings.FASTCHAT_CONTROLLER_URL
async with httpx.AsyncClient() as client:
ret = await client.post(controller_url + "/refresh_all_workers")
ret = await client.post(controller_url + "/list_models")
models = ret.json()["models"]
models.sort()
return {"data": [{"id": m} for m in models], "object": "list"}
@app.post("/v1/chat/completions")
async def create_chat_completion(request: ChatCompletionRequest):
"""Creates a completion for the chat message"""
payload, skip_echo_len = generate_payload(
request.model,
request.messages,
temperature=request.temperature,
max_tokens=request.max_tokens,
stop=request.stop,
)
choices = []
# TODO: batch the requests. maybe not necessary if using CacheFlow worker
chat_completions = []
for i in range(request.n):
content = asyncio.create_task(chat_completion(request.model, payload, skip_echo_len))
chat_completions.append(content)
for i, content_task in enumerate(chat_completions):
content = await content_task
choices.append(
ChatCompletionResponseChoice(
index=i,
message=ChatMessage(role="assistant", content=content),
# TODO: support other finish_reason
finish_reason="stop",
)
)
# TODO: support usage field
# "usage": {
# "prompt_tokens": 9,
# "completion_tokens": 12,
# "total_tokens": 21
# }
return ChatCompletionResponse(choices=choices)
def generate_payload(
model_name: str,
messages: List[Dict[str, str]],
*,
temperature: float,
max_tokens: int,
stop: Union[str, None],
):
is_chatglm = "chatglm" in model_name.lower()
# TODO(suquark): The template is currently a reference. Here we have to make a copy.
# We use create a template factory to avoid this.
conv = get_default_conv_template(model_name).copy()
# TODO(suquark): Conv.messages should be a list. But it is a tuple now.
# We should change it to a list.
conv.messages = list(conv.messages)
for message in messages:
msg_role = message["role"]
if msg_role == "system":
conv.system = message["content"]
elif msg_role == "user":
conv.append_message(conv.roles[0], message["content"])
elif msg_role == "assistant":
conv.append_message(conv.roles[1], message["content"])
else:
raise ValueError(f"Unknown role: {msg_role}")
# Add a blank message for the assistant.
conv.append_message(conv.roles[1], None)
if is_chatglm:
prompt = conv.messages[conv.offset :]
else:
prompt = conv.get_prompt()
skip_echo_len = compute_skip_echo_len(model_name, conv, prompt)
if stop is None:
stop = conv.sep if conv.sep_style == SeparatorStyle.SINGLE else conv.sep2
# TODO(suquark): We should get the default `max_new_tokens`` from the model.
if max_tokens is None:
max_tokens = 512
payload = {
"model": model_name,
"prompt": prompt,
"temperature": temperature,
"max_new_tokens": max_tokens,
"stop": stop,
}
logger.debug(f"==== request ====\n{payload}")
return payload, skip_echo_len
async def chat_completion(model_name: str, payload: Dict[str, Any], skip_echo_len: int):
controller_url = app_settings.FASTCHAT_CONTROLLER_URL
async with httpx.AsyncClient() as client:
ret = await client.post(
controller_url + "/get_worker_address", json={"model": model_name}
)
worker_addr = ret.json()["address"]
# No available worker
if worker_addr == "":
raise ValueError(f"No available worker for {model_name}")
logger.debug(f"model_name: {model_name}, worker_addr: {worker_addr}")
output = ""
delimiter = b"\0"
async with client.stream(
"POST",
worker_addr + "/worker_generate_stream",
headers=headers,
json=payload,
timeout=20,
) as response:
content = await response.aread()
for chunk in content.split(delimiter):
if not chunk:
continue
data = json.loads(chunk.decode())
if data["error_code"] == 0:
output = data["text"][skip_echo_len:].strip()
return output
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="FastChat ChatGPT-compatible Restful API server."
)
parser.add_argument("--host", type=str, default="localhost", help="host name")
parser.add_argument("--port", type=int, default=8000, help="port number")
parser.add_argument("--allow-credentials", action="store_true", help="allow credentials")
parser.add_argument("--allowed-origins", type=json.loads, default=["*"], help="allowed origins")
parser.add_argument("--allowed-methods", type=json.loads, default=["*"], help="allowed methods")
parser.add_argument("--allowed-headers", type=json.loads, default=["*"], help="allowed headers")
args = parser.parse_args()
app.add_middleware(
CORSMiddleware,
allow_origins=args.allowed_origins,
allow_credentials=args.allow_credentials,
allow_methods=args.allowed_methods,
allow_headers=args.allowed_headers,
)
logger.debug(f"==== args ====\n{args}")
uvicorn.run("fastchat.serve.api:app", host=args.host, port=args.port, reload=True)