|
""" |
|
A model worker executes the model. |
|
""" |
|
import argparse |
|
import asyncio |
|
import dataclasses |
|
import logging |
|
import json |
|
import os |
|
import time |
|
from typing import List, Union |
|
import threading |
|
import uuid |
|
|
|
from fastapi import FastAPI, Request, BackgroundTasks |
|
from fastapi.responses import StreamingResponse |
|
import requests |
|
|
|
try: |
|
from transformers import ( |
|
AutoTokenizer, |
|
AutoModelForCausalLM, |
|
LlamaTokenizer, |
|
AutoModel, |
|
) |
|
except ImportError: |
|
from transformers import ( |
|
AutoTokenizer, |
|
AutoModelForCausalLM, |
|
LLaMATokenizer, |
|
AutoModel, |
|
) |
|
import torch |
|
import uvicorn |
|
|
|
from fastchat.constants import WORKER_HEART_BEAT_INTERVAL |
|
from fastchat.serve.inference import load_model, generate_stream |
|
from fastchat.serve.serve_chatglm import chatglm_generate_stream |
|
from fastchat.utils import build_logger, server_error_msg, pretty_print_semaphore |
|
|
|
GB = 1 << 30 |
|
|
|
worker_id = str(uuid.uuid4())[:6] |
|
logger = build_logger("model_worker", f"model_worker_{worker_id}.log") |
|
global_counter = 0 |
|
|
|
model_semaphore = None |
|
|
|
|
|
def heart_beat_worker(controller): |
|
while True: |
|
time.sleep(WORKER_HEART_BEAT_INTERVAL) |
|
controller.send_heart_beat() |
|
|
|
|
|
class ModelWorker: |
|
def __init__( |
|
self, |
|
controller_addr, |
|
worker_addr, |
|
worker_id, |
|
no_register, |
|
model_path, |
|
model_name, |
|
device, |
|
num_gpus, |
|
max_gpu_memory, |
|
load_8bit=False, |
|
): |
|
self.controller_addr = controller_addr |
|
self.worker_addr = worker_addr |
|
self.worker_id = worker_id |
|
if model_path.endswith("/"): |
|
model_path = model_path[:-1] |
|
self.model_name = model_name or model_path.split("/")[-1] |
|
self.device = device |
|
|
|
logger.info(f"Loading the model {self.model_name} on worker {worker_id} ...") |
|
self.model, self.tokenizer = load_model( |
|
model_path, device, num_gpus, max_gpu_memory, load_8bit |
|
) |
|
|
|
if hasattr(self.model.config, "max_sequence_length"): |
|
self.context_len = self.model.config.max_sequence_length |
|
elif hasattr(self.model.config, "max_position_embeddings"): |
|
self.context_len = self.model.config.max_position_embeddings |
|
else: |
|
self.context_len = 2048 |
|
|
|
is_chatglm = "chatglm" in str(type(self.model)).lower() |
|
if is_chatglm: |
|
self.generate_stream_func = chatglm_generate_stream |
|
else: |
|
self.generate_stream_func = generate_stream |
|
|
|
if not no_register: |
|
self.register_to_controller() |
|
self.heart_beat_thread = threading.Thread( |
|
target=heart_beat_worker, args=(self,) |
|
) |
|
self.heart_beat_thread.start() |
|
|
|
def register_to_controller(self): |
|
logger.info("Register to controller") |
|
|
|
url = self.controller_addr + "/register_worker" |
|
data = { |
|
"worker_name": self.worker_addr, |
|
"check_heart_beat": True, |
|
"worker_status": self.get_status(), |
|
} |
|
r = requests.post(url, json=data) |
|
assert r.status_code == 200 |
|
|
|
def send_heart_beat(self): |
|
logger.info( |
|
f"Send heart beat. Models: {[self.model_name]}. " |
|
f"Semaphore: {pretty_print_semaphore(model_semaphore)}. " |
|
f"global_counter: {global_counter}" |
|
) |
|
|
|
url = self.controller_addr + "/receive_heart_beat" |
|
|
|
while True: |
|
try: |
|
ret = requests.post( |
|
url, |
|
json={ |
|
"worker_name": self.worker_addr, |
|
"queue_length": self.get_queue_length(), |
|
}, |
|
timeout=5, |
|
) |
|
exist = ret.json()["exist"] |
|
break |
|
except requests.exceptions.RequestException as e: |
|
logger.error(f"heart beat error: {e}") |
|
time.sleep(5) |
|
|
|
if not exist: |
|
self.register_to_controller() |
|
|
|
def get_queue_length(self): |
|
if ( |
|
model_semaphore is None |
|
or model_semaphore._value is None |
|
or model_semaphore._waiters is None |
|
): |
|
return 0 |
|
else: |
|
return ( |
|
args.limit_model_concurrency |
|
- model_semaphore._value |
|
+ len(model_semaphore._waiters) |
|
) |
|
|
|
def get_status(self): |
|
return { |
|
"model_names": [self.model_name], |
|
"speed": 1, |
|
"queue_length": self.get_queue_length(), |
|
} |
|
|
|
def generate_stream_gate(self, params): |
|
try: |
|
for output in self.generate_stream_func( |
|
self.model, |
|
self.tokenizer, |
|
params, |
|
self.device, |
|
self.context_len, |
|
args.stream_interval, |
|
): |
|
ret = { |
|
"text": output, |
|
"error_code": 0, |
|
} |
|
yield json.dumps(ret).encode() + b"\0" |
|
except torch.cuda.OutOfMemoryError: |
|
ret = { |
|
"text": server_error_msg, |
|
"error_code": 1, |
|
} |
|
yield json.dumps(ret).encode() + b"\0" |
|
|
|
|
|
app = FastAPI() |
|
|
|
|
|
def release_model_semaphore(): |
|
model_semaphore.release() |
|
|
|
|
|
@app.post("/worker_generate_stream") |
|
async def api_generate_stream(request: Request): |
|
global model_semaphore, global_counter |
|
global_counter += 1 |
|
params = await request.json() |
|
|
|
if model_semaphore is None: |
|
model_semaphore = asyncio.Semaphore(args.limit_model_concurrency) |
|
await model_semaphore.acquire() |
|
generator = worker.generate_stream_gate(params) |
|
background_tasks = BackgroundTasks() |
|
background_tasks.add_task(release_model_semaphore) |
|
return StreamingResponse(generator, background=background_tasks) |
|
|
|
|
|
@app.post("/worker_get_status") |
|
async def api_get_status(request: Request): |
|
return worker.get_status() |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--host", type=str, default="localhost") |
|
parser.add_argument("--port", type=int, default=21002) |
|
parser.add_argument("--worker-address", type=str, default="http://localhost:21002") |
|
parser.add_argument( |
|
"--controller-address", type=str, default="http://localhost:21001" |
|
) |
|
parser.add_argument( |
|
"--model-path", |
|
type=str, |
|
default="facebook/opt-350m", |
|
help="The path to the weights", |
|
) |
|
parser.add_argument("--model-name", type=str, help="Optional name") |
|
parser.add_argument( |
|
"--device", type=str, choices=["cpu", "cuda", "mps"], default="cuda" |
|
) |
|
parser.add_argument("--num-gpus", type=int, default=1) |
|
parser.add_argument( |
|
"--gpus", |
|
type=str, |
|
default=None, |
|
help="A single GPU like 1 or multiple GPUs like 0,2" |
|
) |
|
parser.add_argument( |
|
"--max-gpu-memory", |
|
type=str, |
|
help="The maximum memory per gpu. Use a string like '13Gib'", |
|
) |
|
parser.add_argument("--load-8bit", action="store_true") |
|
parser.add_argument("--limit-model-concurrency", type=int, default=5) |
|
parser.add_argument("--stream-interval", type=int, default=2) |
|
parser.add_argument("--no-register", action="store_true") |
|
args = parser.parse_args() |
|
logger.info(f"args: {args}") |
|
|
|
if args.gpus: |
|
if args.num_gpus and len(args.gpus.split(",")) < int(args.num_gpus): |
|
raise ValueError(f"Larger --num-gpus ({args.num_gpus}) than --gpus {args.gpus}!") |
|
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus |
|
|
|
worker = ModelWorker( |
|
args.controller_address, |
|
args.worker_address, |
|
worker_id, |
|
args.no_register, |
|
args.model_path, |
|
args.model_name, |
|
args.device, |
|
args.num_gpus, |
|
args.max_gpu_memory, |
|
args.load_8bit, |
|
) |
|
uvicorn.run(app, host=args.host, port=args.port, log_level="info") |
|
|