ChatVID / config /vid2seq_config.py
Yiqin's picture
init
6ef31de
import ml_collections
YOUCOOK_TRAIN_SIZE = 1333 # Number of videos
def get_config(runlocal=''):
"""Returns the base experiment configuration."""
runlocal = bool(runlocal)
config = ml_collections.ConfigDict()
config.token_loss_coef = 1.
config.runlocal = runlocal
config.experiment_name = 'youcook'
config.count_flops = False # if runlocal else ml_collections.ConfigDict({'count_flops': True})
# dataset
config.dataset_name = 'dense_video_captioning'
config.dataset_configs = ml_collections.ConfigDict()
config.dataset_configs.corrupt = 0.
config.dataset_configs.span_len = 3.
config.dataset_configs.preserve = True
config.dataset_configs.corrupt_coef = 0.
config.dataset_configs.proba_corrupt = 0.
notime = ml_collections.config_dict.FieldReference(False)
config.dataset_configs.notime = notime
config.dataset_configs.abs_time_token = False
config.dataset_configs.random_temporal_crop_proba = 0.5
config.dataset_configs.time_format = 'se'
tmp_only = ml_collections.config_dict.FieldReference(False)
config.dataset_configs.tmp_only = tmp_only
config.dataset_configs.split = False
order = ml_collections.config_dict.FieldReference('ld')
config.dataset_configs.order = order
config.dataset_configs.from_xm = None
config.data_dtype_str = 'float32'
config.dataset_configs.base_dir = '/mnt/petrelfs/wangyiqin/vid_cap/examples'
config.dataset_configs.tables = {
'train': 'train.tfrecord.sst@64',
'validation': 'test@1',
}
config.dataset_configs.examples_per_subset = {
'train': 0,
'validation': 1,
}
# List of modalities to load, supports `features` only for now.
# Note that it only specifies which modalities to load, not which to use,
# which is controlled by config.model.modality_fusion
config.dataset_configs.modalities = ('features', 'text')
config.dataset_configs.features_dim = 768
config.dataset_configs.return_as_dict = True
num_frames = ml_collections.config_dict.FieldReference(
100) # need to change back to 100 in the future -- Yiqin
config.dataset_configs.num_frames = num_frames
num_bins = ml_collections.config_dict.FieldReference(100)
config.dataset_configs.num_bins = num_bins
config.dataset_configs.one_hot_labels = True
config.dataset_configs.zero_centering = True
config.dataset_configs.val_on_test = False
config.dataset_configs.num_eval_clips = 1
config.dataset_configs.prefetch_to_device = 2
# Text params
config.dataset_configs.max_num_output_words = 256
config.dataset_configs.max_num_input_words = 1000
config.dataset_configs.tokenizer = ml_collections.ConfigDict()
config.dataset_configs.tokenizer.tokenizer_type = 'sentence_piece'
config.dataset_configs.caption_string = 'caption/string'
config.dataset_configs.train_caption_string = 'caption/string'
config.dataset_configs.input_timestamp_name = 'video/timestamps'
config.dataset_configs.input_duration_name = 'video/duration'
config.dataset_configs.output_raw_timestamp_name = 'timestamp'
config.dataset_configs.output_raw_duration_name = 'duration'
config.dataset_configs.input_feature_name = 'image/clip_embeddings'
config.dataset_configs.output_raw_feature_name = 'features'
config.dataset_configs.vocabulary_size = 32128
config.dataset_configs.max_events = 20
config.dataset_configs.asr_notime = False
config.datasets = {'youcook': config.dataset_configs}
# Decoding
config.decoding = ml_collections.ConfigDict()
config.decoding.decoding_method = 'beamsearch'
# config.decoding.decoding_method = 'temperature_sample'
config.decoding.num_decodes = 4
config.decoding.alpha = 1
config.decoding.temperature = 1.
# Model
config.model_name = 'vid2seq'
config.model = ml_collections.ConfigDict()
config.model.from_xm = None
# Encoder configs
config.model.encoder = ml_collections.ConfigDict()
config.model.encoder.share_encoder = True
config.model.encoder.encoder_type = 'cat_encoder'
config.model.encoder.cat_encoder = ml_collections.ConfigDict()
config.model.encoder.cat_encoder.dim = 2048
config.model.encoder.cat_encoder.layers = 12
config.model.encoder.cat_encoder.heads = 12
config.model.encoder.cat_encoder.pos_embed = 'learned_1d'
config.model.encoder.cat_encoder.dropout_rate = 0.
config.model.encoder.cat_encoder.t5_dropout_rate = 0.1
config.model.encoder.cat_encoder.stochastic_depth = 0.
config.model.encoder.cat_encoder.pretrained_config = 't5_1_1_base'
config.model.encoder.from_xm = None
# Decoder configs
config.model.decoder_type = 't5_decoder'
config.model.decoder = ml_collections.ConfigDict()
config.model.decoder.order = order
config.model.decoder.t5_decoder = ml_collections.ConfigDict()
config.model.decoder.t5_decoder.logits_via_embedding = False
config.model.decoder.t5_decoder.dropout_rate = 0.1
config.model.decoder.t5_decoder.num_frames = num_frames
config.model.decoder.notime = notime
config.model.decoder.num_bins = num_bins
config.model.decoder.tmp_only = tmp_only
config.model.decoder.t5_decoder.pretrained_config = 't5_1_1_base'
# Initalisation configs
config.init_from = ml_collections.ConfigDict()
# Replace with your checkpoint pretrained on YT-temporal-1bn, assuming it has
# been trained for 200K iterations
config.init_from.checkpoint_path = '/mnt/petrelfs/wangyiqin/vid_cap/vid2seq_model'
# config.init_from.model_config = '/mnt/petrelfs/wangyiqin/vid_cap/scenic/scenic/projects/vid2seq/configs/yttemporal.py'
config.init_from.step = 200001 # ytt 200000, anet 200001
config.init_from.encoder = ml_collections.ConfigDict()
config.init_from.encoder.checkpoint_path = None
config.init_from.encoder.init_from_vit = False
config.init_from.encoder = ml_collections.ConfigDict()
config.init_from.encoder.load_pretrained_weights = True
config.init_from.decoder = ml_collections.ConfigDict()
config.init_from.decoder.load_pretrained_weights = True
config.init_from.t5 = ml_collections.ConfigDict()
config.init_from.t5.load_pretrained_weights = True
# Training
config.trainer_name = 'densevidcap_trainer'
config.optimizer = 'adam'
config.optimizer_configs = ml_collections.ConfigDict()
config.optimizer_configs.weight_decay = 0.
config.l2_decay_factor = 0.
config.max_grad_norm = 1.
config.label_smoothing = 0.1
epochs = ml_collections.config_dict.FieldReference(0) ### add
config.num_training_epochs = 0
batch_size = ml_collections.config_dict.FieldReference(1)
config.batch_size = 1 #if runlocal else batch_size # 128 # Minimum is num_devices = 32
config.eval_batch_size = 1 #if runlocal else 32 # Needs to be num_local_devices
config.rng_seed = 0
# Learning schedule.
steps_per_epoch = 3 if runlocal else YOUCOOK_TRAIN_SIZE // batch_size
total_steps = epochs * steps_per_epoch
config.lr_configs = ml_collections.ConfigDict()
config.lr_configs.learning_rate_schedule = 'compound'
config.lr_configs.factors = 'constant * cosine_decay * linear_warmup'
config.lr_configs.warmup_steps = total_steps // 10
config.lr_configs.steps_per_cycle = total_steps
config.lr_configs.total_steps = total_steps
config.lr_configs.base_learning_rate = 3e-4
config.eval_metrics = ['cider', 'meteor', 'soda']
# Logging
config.log_eval_steps = steps_per_epoch # write TB and/or XM summary
config.log_summary_steps = steps_per_epoch # write TB and/or XM summary
config.write_summary = True # write TB and/or XM summary
config.write_xm_measurements = True # write XM measurements
config.xprof = True # Profile using xprof
config.checkpoint = True # do checkpointing
config.debug_train = False # debug mode during training
config.debug_eval = True # debug mode during eval
return config