Spaces:
Runtime error
Runtime error
File size: 15,485 Bytes
96a9519 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
#! fork: https://github.com/NVIDIA/TensorRT/blob/main/demo/Diffusion/utilities.py
#
# Copyright 2022 The HuggingFace Inc. team.
# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import gc
from collections import OrderedDict
from typing import *
import numpy as np
import onnx
import onnx_graphsurgeon as gs
import tensorrt as trt
import torch
from cuda import cudart
from PIL import Image
from polygraphy import cuda
from polygraphy.backend.common import bytes_from_path
from polygraphy.backend.trt import (
CreateConfig,
Profile,
engine_from_bytes,
engine_from_network,
network_from_onnx_path,
save_engine,
)
from polygraphy.backend.trt import util as trt_util
from .models import CLIP, VAE, BaseModel, UNet, VAEEncoder
TRT_LOGGER = trt.Logger(trt.Logger.ERROR)
# Map of numpy dtype -> torch dtype
numpy_to_torch_dtype_dict = {
np.uint8: torch.uint8,
np.int8: torch.int8,
np.int16: torch.int16,
np.int32: torch.int32,
np.int64: torch.int64,
np.float16: torch.float16,
np.float32: torch.float32,
np.float64: torch.float64,
np.complex64: torch.complex64,
np.complex128: torch.complex128,
}
if np.version.full_version >= "1.24.0":
numpy_to_torch_dtype_dict[np.bool_] = torch.bool
else:
numpy_to_torch_dtype_dict[np.bool] = torch.bool
# Map of torch dtype -> numpy dtype
torch_to_numpy_dtype_dict = {value: key for (key, value) in numpy_to_torch_dtype_dict.items()}
def CUASSERT(cuda_ret):
err = cuda_ret[0]
if err != cudart.cudaError_t.cudaSuccess:
raise RuntimeError(
f"CUDA ERROR: {err}, error code reference: https://nvidia.github.io/cuda-python/module/cudart.html#cuda.cudart.cudaError_t"
)
if len(cuda_ret) > 1:
return cuda_ret[1]
return None
class Engine:
def __init__(
self,
engine_path,
):
self.engine_path = engine_path
self.engine = None
self.context = None
self.buffers = OrderedDict()
self.tensors = OrderedDict()
self.cuda_graph_instance = None # cuda graph
def __del__(self):
[buf.free() for buf in self.buffers.values() if isinstance(buf, cuda.DeviceArray)]
del self.engine
del self.context
del self.buffers
del self.tensors
def refit(self, onnx_path, onnx_refit_path):
def convert_int64(arr):
# TODO: smarter conversion
if len(arr.shape) == 0:
return np.int32(arr)
return arr
def add_to_map(refit_dict, name, values):
if name in refit_dict:
assert refit_dict[name] is None
if values.dtype == np.int64:
values = convert_int64(values)
refit_dict[name] = values
print(f"Refitting TensorRT engine with {onnx_refit_path} weights")
refit_nodes = gs.import_onnx(onnx.load(onnx_refit_path)).toposort().nodes
# Construct mapping from weight names in refit model -> original model
name_map = {}
for n, node in enumerate(gs.import_onnx(onnx.load(onnx_path)).toposort().nodes):
refit_node = refit_nodes[n]
assert node.op == refit_node.op
# Constant nodes in ONNX do not have inputs but have a constant output
if node.op == "Constant":
name_map[refit_node.outputs[0].name] = node.outputs[0].name
# Handle scale and bias weights
elif node.op == "Conv":
if node.inputs[1].__class__ == gs.Constant:
name_map[refit_node.name + "_TRTKERNEL"] = node.name + "_TRTKERNEL"
if node.inputs[2].__class__ == gs.Constant:
name_map[refit_node.name + "_TRTBIAS"] = node.name + "_TRTBIAS"
# For all other nodes: find node inputs that are initializers (gs.Constant)
else:
for i, inp in enumerate(node.inputs):
if inp.__class__ == gs.Constant:
name_map[refit_node.inputs[i].name] = inp.name
def map_name(name):
if name in name_map:
return name_map[name]
return name
# Construct refit dictionary
refit_dict = {}
refitter = trt.Refitter(self.engine, TRT_LOGGER)
all_weights = refitter.get_all()
for layer_name, role in zip(all_weights[0], all_weights[1]):
# for speciailized roles, use a unique name in the map:
if role == trt.WeightsRole.KERNEL:
name = layer_name + "_TRTKERNEL"
elif role == trt.WeightsRole.BIAS:
name = layer_name + "_TRTBIAS"
else:
name = layer_name
assert name not in refit_dict, "Found duplicate layer: " + name
refit_dict[name] = None
for n in refit_nodes:
# Constant nodes in ONNX do not have inputs but have a constant output
if n.op == "Constant":
name = map_name(n.outputs[0].name)
print(f"Add Constant {name}\n")
add_to_map(refit_dict, name, n.outputs[0].values)
# Handle scale and bias weights
elif n.op == "Conv":
if n.inputs[1].__class__ == gs.Constant:
name = map_name(n.name + "_TRTKERNEL")
add_to_map(refit_dict, name, n.inputs[1].values)
if n.inputs[2].__class__ == gs.Constant:
name = map_name(n.name + "_TRTBIAS")
add_to_map(refit_dict, name, n.inputs[2].values)
# For all other nodes: find node inputs that are initializers (AKA gs.Constant)
else:
for inp in n.inputs:
name = map_name(inp.name)
if inp.__class__ == gs.Constant:
add_to_map(refit_dict, name, inp.values)
for layer_name, weights_role in zip(all_weights[0], all_weights[1]):
if weights_role == trt.WeightsRole.KERNEL:
custom_name = layer_name + "_TRTKERNEL"
elif weights_role == trt.WeightsRole.BIAS:
custom_name = layer_name + "_TRTBIAS"
else:
custom_name = layer_name
# Skip refitting Trilu for now; scalar weights of type int64 value 1 - for clip model
if layer_name.startswith("onnx::Trilu"):
continue
if refit_dict[custom_name] is not None:
refitter.set_weights(layer_name, weights_role, refit_dict[custom_name])
else:
print(f"[W] No refit weights for layer: {layer_name}")
if not refitter.refit_cuda_engine():
print("Failed to refit!")
exit(0)
def build(
self,
onnx_path,
fp16,
input_profile=None,
enable_refit=False,
enable_all_tactics=False,
timing_cache=None,
workspace_size=0,
):
print(f"Building TensorRT engine for {onnx_path}: {self.engine_path}")
p = Profile()
if input_profile:
for name, dims in input_profile.items():
assert len(dims) == 3
p.add(name, min=dims[0], opt=dims[1], max=dims[2])
config_kwargs = {}
if workspace_size > 0:
config_kwargs["memory_pool_limits"] = {trt.MemoryPoolType.WORKSPACE: workspace_size}
if not enable_all_tactics:
config_kwargs["tactic_sources"] = []
engine = engine_from_network(
network_from_onnx_path(onnx_path, flags=[trt.OnnxParserFlag.NATIVE_INSTANCENORM]),
config=CreateConfig(
fp16=fp16, refittable=enable_refit, profiles=[p], load_timing_cache=timing_cache, **config_kwargs
),
save_timing_cache=timing_cache,
)
save_engine(engine, path=self.engine_path)
def load(self):
print(f"Loading TensorRT engine: {self.engine_path}")
self.engine = engine_from_bytes(bytes_from_path(self.engine_path))
def activate(self, reuse_device_memory=None):
if reuse_device_memory:
self.context = self.engine.create_execution_context_without_device_memory()
self.context.device_memory = reuse_device_memory
else:
self.context = self.engine.create_execution_context()
def allocate_buffers(self, shape_dict=None, device="cuda"):
for idx in range(trt_util.get_bindings_per_profile(self.engine)):
binding = self.engine[idx]
if shape_dict and binding in shape_dict:
shape = shape_dict[binding]
else:
shape = self.engine.get_binding_shape(binding)
dtype = trt.nptype(self.engine.get_binding_dtype(binding))
if self.engine.binding_is_input(binding):
self.context.set_binding_shape(idx, shape)
tensor = torch.empty(tuple(shape), dtype=numpy_to_torch_dtype_dict[dtype]).to(device=device)
self.tensors[binding] = tensor
def infer(self, feed_dict, stream, use_cuda_graph=False):
for name, buf in feed_dict.items():
self.tensors[name].copy_(buf)
for name, tensor in self.tensors.items():
self.context.set_tensor_address(name, tensor.data_ptr())
if use_cuda_graph:
if self.cuda_graph_instance is not None:
CUASSERT(cudart.cudaGraphLaunch(self.cuda_graph_instance, stream.ptr))
CUASSERT(cudart.cudaStreamSynchronize(stream.ptr))
else:
# do inference before CUDA graph capture
noerror = self.context.execute_async_v3(stream.ptr)
if not noerror:
raise ValueError("ERROR: inference failed.")
# capture cuda graph
CUASSERT(
cudart.cudaStreamBeginCapture(stream.ptr, cudart.cudaStreamCaptureMode.cudaStreamCaptureModeGlobal)
)
self.context.execute_async_v3(stream.ptr)
self.graph = CUASSERT(cudart.cudaStreamEndCapture(stream.ptr))
self.cuda_graph_instance = CUASSERT(cudart.cudaGraphInstantiate(self.graph, 0))
else:
noerror = self.context.execute_async_v3(stream.ptr)
if not noerror:
raise ValueError("ERROR: inference failed.")
return self.tensors
def decode_images(images: torch.Tensor):
images = (
((images + 1) * 255 / 2).clamp(0, 255).detach().permute(0, 2, 3, 1).round().type(torch.uint8).cpu().numpy()
)
return [Image.fromarray(x) for x in images]
def preprocess_image(image: Image.Image):
w, h = image.size
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
image = image.resize((w, h))
init_image = np.array(image).astype(np.float32) / 255.0
init_image = init_image[None].transpose(0, 3, 1, 2)
init_image = torch.from_numpy(init_image).contiguous()
return 2.0 * init_image - 1.0
def prepare_mask_and_masked_image(image: Image.Image, mask: Image.Image):
if isinstance(image, Image.Image):
image = np.array(image.convert("RGB"))
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32).contiguous() / 127.5 - 1.0
if isinstance(mask, Image.Image):
mask = np.array(mask.convert("L"))
mask = mask.astype(np.float32) / 255.0
mask = mask[None, None]
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
mask = torch.from_numpy(mask).to(dtype=torch.float32).contiguous()
masked_image = image * (mask < 0.5)
return mask, masked_image
def create_models(
model_id: str,
use_auth_token: Optional[str],
device: Union[str, torch.device],
max_batch_size: int,
unet_in_channels: int = 4,
embedding_dim: int = 768,
):
models = {
"clip": CLIP(
hf_token=use_auth_token,
device=device,
max_batch_size=max_batch_size,
embedding_dim=embedding_dim,
),
"unet": UNet(
hf_token=use_auth_token,
fp16=True,
device=device,
max_batch_size=max_batch_size,
embedding_dim=embedding_dim,
unet_dim=unet_in_channels,
),
"vae": VAE(
hf_token=use_auth_token,
device=device,
max_batch_size=max_batch_size,
embedding_dim=embedding_dim,
),
"vae_encoder": VAEEncoder(
hf_token=use_auth_token,
device=device,
max_batch_size=max_batch_size,
embedding_dim=embedding_dim,
),
}
return models
def build_engine(
engine_path: str,
onnx_opt_path: str,
model_data: BaseModel,
opt_image_height: int,
opt_image_width: int,
opt_batch_size: int,
build_static_batch: bool = False,
build_dynamic_shape: bool = False,
build_all_tactics: bool = False,
build_enable_refit: bool = False,
):
_, free_mem, _ = cudart.cudaMemGetInfo()
GiB = 2**30
if free_mem > 6 * GiB:
activation_carveout = 4 * GiB
max_workspace_size = free_mem - activation_carveout
else:
max_workspace_size = 0
engine = Engine(engine_path)
input_profile = model_data.get_input_profile(
opt_batch_size,
opt_image_height,
opt_image_width,
static_batch=build_static_batch,
static_shape=not build_dynamic_shape,
)
engine.build(
onnx_opt_path,
fp16=True,
input_profile=input_profile,
enable_refit=build_enable_refit,
enable_all_tactics=build_all_tactics,
workspace_size=max_workspace_size,
)
return engine
def export_onnx(
model,
onnx_path: str,
model_data: BaseModel,
opt_image_height: int,
opt_image_width: int,
opt_batch_size: int,
onnx_opset: int,
):
with torch.inference_mode(), torch.autocast("cuda"):
inputs = model_data.get_sample_input(opt_batch_size, opt_image_height, opt_image_width)
torch.onnx.export(
model,
inputs,
onnx_path,
export_params=True,
opset_version=onnx_opset,
do_constant_folding=True,
input_names=model_data.get_input_names(),
output_names=model_data.get_output_names(),
dynamic_axes=model_data.get_dynamic_axes(),
)
del model
gc.collect()
torch.cuda.empty_cache()
def optimize_onnx(
onnx_path: str,
onnx_opt_path: str,
model_data: BaseModel,
):
onnx_opt_graph = model_data.optimize(onnx.load(onnx_path))
onnx.save(onnx_opt_graph, onnx_opt_path)
del onnx_opt_graph
gc.collect()
torch.cuda.empty_cache()
|