File size: 22,472 Bytes
b27b0a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
import json
import logging
import queue
import random
import re
import threading
import uuid
from collections import defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
from copy import deepcopy
from dataclasses import asdict
from typing import Dict, List, Optional

from lagent.actions import ActionExecutor
from lagent.agents import BaseAgent, Internlm2Agent
from lagent.agents.internlm2_agent import Internlm2Protocol
from lagent.schema import AgentReturn, AgentStatusCode, ModelStatusCode
from termcolor import colored

'Logging Initialization'
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


class SearcherAgent(Internlm2Agent):

    def __init__(self, template='{query}', **kwargs) -> None:
        super().__init__(**kwargs)
        self.template = template
    
    def stream_chat(self,
                    question: str,
                    root_question: str = None,
                    parent_response: List[dict] = None,
                    **kwargs) -> AgentReturn:
        message = self.template['input'].format(question=question,
                                                topic=root_question)
        if parent_response:
            if 'context' in self.template:
                parent_response = [
                    self.template['context'].format(**item)
                    for item in parent_response
                ]
                message = '\n'.join(parent_response + [message])
        print(colored(f'current query: {message}', 'green'))
        for agent_return in super().stream_chat(message,
                                                session_id=random.randint(
                                                    0, 999999),
                                                **kwargs):
            agent_return.type = 'searcher'
            agent_return.content = question
            yield deepcopy(agent_return)


class MindSearchProtocol(Internlm2Protocol):

    def __init__(
        self,
        meta_prompt: str = None,
        interpreter_prompt: str = None,
        plugin_prompt: str = None,
        few_shot: Optional[List] = None,
        response_prompt: str = None,
        language: Dict = dict(
            begin='',
            end='',
            belong='assistant',
        ),
        tool: Dict = dict(
            begin='{start_token}{name}\n',
            start_token='<|action_start|>',
            name_map=dict(plugin='<|plugin|>', interpreter='<|interpreter|>'),
            belong='assistant',
            end='<|action_end|>\n',
        ),
        execute: Dict = dict(role='execute',
                             begin='',
                             end='',
                             fallback_role='environment'),
    ) -> None:
        self.response_prompt = response_prompt
        super().__init__(meta_prompt=meta_prompt,
                         interpreter_prompt=interpreter_prompt,
                         plugin_prompt=plugin_prompt,
                         few_shot=few_shot,
                         language=language,
                         tool=tool,
                         execute=execute)

    def format(self,
               inner_step: List[Dict],
               plugin_executor: ActionExecutor = None,
               **kwargs) -> list:
        formatted = []
        if self.meta_prompt:
            formatted.append(dict(role='system', content=self.meta_prompt))
        if self.plugin_prompt:
            plugin_prompt = self.plugin_prompt.format(tool_info=json.dumps(
                plugin_executor.get_actions_info(), ensure_ascii=False))
            formatted.append(
                dict(role='system', content=plugin_prompt, name='plugin'))
        if self.interpreter_prompt:
            formatted.append(
                dict(role='system',
                     content=self.interpreter_prompt,
                     name='interpreter'))
        if self.few_shot:
            for few_shot in self.few_shot:
                formatted += self.format_sub_role(few_shot)
        formatted += self.format_sub_role(inner_step)
        return formatted


class WebSearchGraph:
    end_signal = 'end'
    searcher_cfg = dict()

    def __init__(self):
        self.nodes = {}
        self.adjacency_list = defaultdict(list)
        self.executor = ThreadPoolExecutor(max_workers=10)
        # self.executor = ThreadPoolExecutor(max_workers=1)
        self.future_to_query = dict()
        self.searcher_resp_queue = queue.Queue()

    def add_root_node(self, node_content, node_name='root'):
        self.nodes[node_name] = dict(content=node_content, type='root')
        self.adjacency_list[node_name] = []
        self.searcher_resp_queue.put((node_name, self.nodes[node_name], []))

    def add_node(self, node_name, node_content):
        self.nodes[node_name] = dict(content=node_content, type='searcher')
        self.adjacency_list[node_name] = []

        def model_stream_thread():
            agent = SearcherAgent(**self.searcher_cfg)
            try:
                parent_nodes = []
                for start_node, adj in self.adjacency_list.items():
                    for neighbor in adj:
                        if node_name == neighbor[
                                'name'] and start_node in self.nodes and 'response' in self.nodes[
                                    start_node]:
                            parent_nodes.append(self.nodes[start_node])
                parent_response = [
                    dict(question=node['content'], answer=node['response'])
                    for node in parent_nodes
                ]
                for answer in agent.stream_chat(
                        node_content,
                        self.nodes['root']['content'],
                        parent_response=parent_response):
                    self.searcher_resp_queue.put(
                        deepcopy((node_name,
                                  dict(response=answer.response,
                                       detail=answer), [])))
                self.nodes[node_name]['response'] = answer.response
                self.nodes[node_name]['detail'] = answer
            except Exception as e:
                logger.exception(f'Error in model_stream_thread: {e}')

        self.future_to_query[self.executor.submit(
            model_stream_thread)] = f'{node_name}-{node_content}'

    def add_response_node(self, node_name='response'):
        self.nodes[node_name] = dict(type='end')
        self.searcher_resp_queue.put((node_name, self.nodes[node_name], []))

    def add_edge(self, start_node, end_node):
        self.adjacency_list[start_node].append(
            dict(id=str(uuid.uuid4()), name=end_node, state=2))
        self.searcher_resp_queue.put((start_node, self.nodes[start_node],
                                      self.adjacency_list[start_node]))

    def reset(self):
        self.nodes = {}
        self.adjacency_list = defaultdict(list)

    def node(self, node_name):
        return self.nodes[node_name].copy()


class MindSearchAgent(BaseAgent):

    def __init__(self,
                 llm,
                 searcher_cfg,
                 protocol=MindSearchProtocol(),
                 max_turn=10):
        self.local_dict = {}
        self.ptr = 0
        self.llm = llm
        self.max_turn = max_turn
        WebSearchGraph.searcher_cfg = searcher_cfg
        super().__init__(llm=llm, action_executor=None, protocol=protocol)
    
    def chat(self, message, **kwargs):
        if isinstance(message, str):
            message = [{'role': 'user', 'content': message}]
        elif isinstance(message, dict):
            message = [message]
        as_dict = kwargs.pop('as_dict', False)
        return_early = kwargs.pop('return_early', False)
        self.local_dict.clear()
        self.ptr = 0
        inner_history = message[:]
        agent_return = AgentReturn()
        agent_return.type = 'planner'
        agent_return.nodes = {}
        agent_return.adjacency_list = {}
        agent_return.inner_steps = deepcopy(inner_history)
        for _ in range(self.max_turn):
            prompt = self._protocol.format(inner_step=inner_history)
            code = None
            response = self.llm.chat(prompt, session_id=random.randint(0, 999999), **kwargs)
            model_state = ModelStatusCode.END
            response = response.replace('<|plugin|>', '<|interpreter|>')
            _, language, action = self._protocol.parse(response)
            if not language and not action:
                continue
            code = action['parameters']['command'] if action else ''
            agent_return.state = self._determine_agent_state(model_state, code, agent_return)
            agent_return.response = language if not code else code
            inner_history.append({'role': 'language', 'content': language})
            print(colored(response, 'blue'))
            if code:
                agent_return = self._process_code_simple(agent_return, inner_history,
                                              code, as_dict, return_early)
            else:
                agent_return.state = AgentStatusCode.END
                return agent_return
        agent_return.state = AgentStatusCode.END
        return agent_return

    def stream_chat(self, message, **kwargs):
        if isinstance(message, str):
            message = [{'role': 'user', 'content': message}]
        elif isinstance(message, dict):
            message = [message]
        as_dict = kwargs.pop('as_dict', False)
        return_early = kwargs.pop('return_early', False)
        self.local_dict.clear()
        self.ptr = 0
        inner_history = message[:]
        agent_return = AgentReturn()
        agent_return.type = 'planner'
        agent_return.nodes = {}
        agent_return.adjacency_list = {}
        agent_return.inner_steps = deepcopy(inner_history)
        for _ in range(self.max_turn):
            prompt = self._protocol.format(inner_step=inner_history)
            code = None
            for model_state, response, _ in self.llm.stream_chat(
                    prompt, session_id=random.randint(0, 999999), **kwargs):
                if model_state.value < 0:
                    agent_return.state = getattr(AgentStatusCode,
                                                 model_state.name)
                    yield deepcopy(agent_return)
                    return
                response = response.replace('<|plugin|>', '<|interpreter|>')
                _, language, action = self._protocol.parse(response)
                if not language and not action:
                    continue
                code = action['parameters']['command'] if action else ''
                agent_return.state = self._determine_agent_state(
                    model_state, code, agent_return)
                agent_return.response = language if not code else code

                # if agent_return.state == AgentStatusCode.STREAM_ING:
                yield deepcopy(agent_return)

            inner_history.append({'role': 'language', 'content': language})
            print(colored(response, 'blue'))

            if code:
                yield from self._process_code(agent_return, inner_history,
                                              code, as_dict, return_early)
            else:
                agent_return.state = AgentStatusCode.END
                yield deepcopy(agent_return)
                return

        agent_return.state = AgentStatusCode.END
        yield deepcopy(agent_return)

    def _determine_agent_state(self, model_state, code, agent_return):
        if code:
            return (AgentStatusCode.PLUGIN_START if model_state
                    == ModelStatusCode.END else AgentStatusCode.PLUGIN_START)
        return (AgentStatusCode.ANSWER_ING
                if agent_return.nodes and 'response' in agent_return.nodes else
                AgentStatusCode.STREAM_ING)
    
    def _process_code_simple(self,
                      agent_return,
                      inner_history,
                      code,
                      as_dict=False,
                      return_early=False):
        for node_name, node, adj in self.execute_code(
                code, return_early=return_early):
            if as_dict and 'detail' in node:
                node['detail'] = asdict(node['detail'])
            if not adj:
                agent_return.nodes[node_name] = node
            else:
                agent_return.adjacency_list[node_name] = adj
            # state  1进行中,2未开始,3已结束
            for start_node, neighbors in agent_return.adjacency_list.items():
                for neighbor in neighbors:
                    if neighbor['name'] not in agent_return.nodes:
                        state = 2
                    elif 'detail' not in agent_return.nodes[neighbor['name']]:
                        state = 2
                    elif agent_return.nodes[neighbor['name']][
                            'detail'].state == AgentStatusCode.END:
                        state = 3
                    else:
                        state = 1
                    neighbor['state'] = state
            if not adj:
                # yield deepcopy((agent_return, node_name))
                pass
        
        reference, references_url = self._generate_reference(
            agent_return, code, as_dict)
        inner_history.append({
            'role': 'tool',
            'content': code,
            'name': 'plugin'
        })
        inner_history.append({
            'role': 'environment',
            'content': reference,
            'name': 'plugin'
        })
        agent_return.inner_steps = deepcopy(inner_history)
        agent_return.state = AgentStatusCode.PLUGIN_RETURN
        agent_return.references.update(references_url)
        return deepcopy(agent_return)

    def _process_code(self,
                      agent_return,
                      inner_history,
                      code,
                      as_dict=False,
                      return_early=False):
        for node_name, node, adj in self.execute_code(
                code, return_early=return_early):
            if as_dict and 'detail' in node:
                node['detail'] = asdict(node['detail'])
            if not adj:
                agent_return.nodes[node_name] = node
            else:
                agent_return.adjacency_list[node_name] = adj
            # state  1进行中,2未开始,3已结束
            for start_node, neighbors in agent_return.adjacency_list.items():
                for neighbor in neighbors:
                    if neighbor['name'] not in agent_return.nodes:
                        state = 2
                    elif 'detail' not in agent_return.nodes[neighbor['name']]:
                        state = 2
                    elif agent_return.nodes[neighbor['name']][
                            'detail'].state == AgentStatusCode.END:
                        state = 3
                    else:
                        state = 1
                    neighbor['state'] = state
            if not adj:
                yield deepcopy((agent_return, node_name))
        
        reference, references_url = self._generate_reference(
            agent_return, code, as_dict)
        inner_history.append({
            'role': 'tool',
            'content': code,
            'name': 'plugin'
        })
        inner_history.append({
            'role': 'environment',
            'content': reference,
            'name': 'plugin'
        })
        agent_return.inner_steps = deepcopy(inner_history)
        agent_return.state = AgentStatusCode.PLUGIN_RETURN
        agent_return.references.update(references_url)
        yield deepcopy(agent_return)

    def _generate_reference(self, agent_return, code, as_dict):
        node_list = [
            node.strip().strip('\"') for node in re.findall(
                r'graph\.node\("((?:[^"\\]|\\.)*?)"\)', code)
        ]
        if 'add_response_node' in code:
            return self._protocol.response_prompt, dict()
        references = []
        references_url = dict()
        for node_name in node_list:
            ref_results = None
            ref2url = None
            if as_dict:
                actions = agent_return.nodes[node_name]['detail']['actions']
            else:
                actions = agent_return.nodes[node_name]['detail'].actions
            if actions:
                ref_results = actions[0]['result'][0][
                    'content'] if as_dict else actions[0].result[0]['content']
            
            if ref_results:
                ref_results = json.loads(ref_results)
                ref2url = {
                    idx: item['url']
                    for idx, item in ref_results.items()
                }

            ref = f"## {node_name}\n\n{agent_return.nodes[node_name]['response']}\n"
            updated_ref = re.sub(
                r'\[\[(\d+)\]\]',
                lambda match: f'[[{int(match.group(1)) + self.ptr}]]', ref)
            numbers = [int(n) for n in re.findall(r'\[\[(\d+)\]\]', ref)]
            if numbers:
                try:
                    assert all(str(elem) in ref2url for elem in numbers)
                except Exception as exc:
                    logger.info(f'Illegal reference id: {str(exc)}')
                if ref2url:
                    references_url.update({
                        str(idx + self.ptr): ref2url[str(idx)]
                        for idx in set(numbers) if str(idx) in ref2url
                    })
                self.ptr += max(numbers) + 1
            references.append(updated_ref)
        return '\n'.join(references), references_url

    def execute_code(self, command: str, return_early=False):

        def extract_code(text: str) -> str:
            text = re.sub(r'from ([\w.]+) import WebSearchGraph', '', text)
            triple_match = re.search(r'```[^\n]*\n(.+?)```', text, re.DOTALL)
            single_match = re.search(r'`([^`]*)`', text, re.DOTALL)
            if triple_match:
                return triple_match.group(1)
            elif single_match:
                return single_match.group(1)
            return text

        def run_command(cmd):
            try:
                exec(cmd, globals(), self.local_dict)
                plan_graph = self.local_dict.get('graph')
                assert plan_graph is not None
                for future in as_completed(plan_graph.future_to_query):
                    future.result()
                plan_graph.future_to_query.clear()
                plan_graph.searcher_resp_queue.put(plan_graph.end_signal)
            except Exception as e:
                logger.exception(f'Error executing code: {e}')
                raise

        command = extract_code(command)
        producer_thread = threading.Thread(target=run_command,
                                           args=(command, ))
        producer_thread.start()

        responses = defaultdict(list)
        ordered_nodes = []
        active_node = None

        while True:
            try:
                item = self.local_dict.get('graph').searcher_resp_queue.get(
                    timeout=60)
                if item is WebSearchGraph.end_signal:
                    for node_name in ordered_nodes:
                        # resp = None
                        for resp in responses[node_name]:
                            yield deepcopy(resp)
                        # if resp:
                        #     assert resp[1][
                        #         'detail'].state == AgentStatusCode.END
                    break
                node_name, node, adj = item
                if node_name in ['root', 'response']:
                    yield deepcopy((node_name, node, adj))
                else:
                    if node_name not in ordered_nodes:
                        ordered_nodes.append(node_name)
                    responses[node_name].append((node_name, node, adj))
                    if not active_node and ordered_nodes:
                        active_node = ordered_nodes[0]
                    while active_node and responses[active_node]:
                        if return_early:
                            if 'detail' in responses[active_node][-1][
                                    1] and responses[active_node][-1][1][
                                        'detail'].state == AgentStatusCode.END:
                                item = responses[active_node][-1]
                            else:
                                item = responses[active_node].pop(0)
                        else:
                            item = responses[active_node].pop(0)
                        if 'detail' in item[1] and item[1][
                                'detail'].state == AgentStatusCode.END:
                            ordered_nodes.pop(0)
                            responses[active_node].clear()
                            active_node = None
                        yield deepcopy(item)
            except queue.Empty:
                if not producer_thread.is_alive():
                    break
        producer_thread.join()
        return


class SimpleSearchAgent(BaseAgent):
    def __init__(self,
                 llm,
                 searcher_cfg,
                 protocol=MindSearchProtocol(),
                 max_turn=10):
        self.local_dict = {}
        self.ptr = 0
        self.llm = llm
        self.max_turn = max_turn
        WebSearchGraph.searcher_cfg = searcher_cfg
        super().__init__(llm=llm, action_executor=None, protocol=protocol)

    def stream_chat(self, message, **kwargs):
        if isinstance(message, str):
            message = [{'role': 'user', 'content': message}]
        elif isinstance(message, dict):
            message = [message]
        self.local_dict.clear()
        self.ptr = 0
        inner_history = message[:]
        agent_return = AgentReturn()
        agent_return.type = 'planner'
        agent_return.nodes = {}
        agent_return.adjacency_list = {}
        agent_return.inner_steps = deepcopy(inner_history)
        
        agent = SearcherAgent(**WebSearchGraph.searcher_cfg)
        for agent_return in agent.stream_chat(
            message[0],
            message[0],
            None
        ):
            yield agent_return
        agent_return.state = AgentStatusCode.END
        return agent_return