cnzzx commited on
Commit
d2ca3e2
1 Parent(s): 271c21d
models/search_agent/mindsearch_agent.py CHANGED
@@ -194,7 +194,7 @@ class MindSearchAgent(BaseAgent):
194
  WebSearchGraph.searcher_cfg = searcher_cfg
195
  super().__init__(llm=llm, action_executor=None, protocol=protocol)
196
 
197
- def chat(self, message, **kwargs):
198
  if isinstance(message, str):
199
  message = [{'role': 'user', 'content': message}]
200
  elif isinstance(message, dict):
@@ -211,26 +211,32 @@ class MindSearchAgent(BaseAgent):
211
  agent_return.inner_steps = deepcopy(inner_history)
212
  for _ in range(self.max_turn):
213
  prompt = self._protocol.format(inner_step=inner_history)
 
 
 
214
  code = None
215
- response = self.llm.chat(prompt, session_id=random.randint(0, 999999), **kwargs)
216
- model_state = ModelStatusCode.END
 
 
217
  response = response.replace('<|plugin|>', '<|interpreter|>')
218
  _, language, action = self._protocol.parse(response)
219
  if not language and not action:
220
  continue
221
  code = action['parameters']['command'] if action else ''
222
- agent_return.state = self._determine_agent_state(model_state, code, agent_return)
223
  agent_return.response = language if not code else code
 
224
  inner_history.append({'role': 'language', 'content': language})
225
  print(colored(response, 'blue'))
 
226
  if code:
227
- agent_return = self._process_code_simple(agent_return, inner_history,
228
- code, as_dict, return_early)
229
  else:
230
  agent_return.state = AgentStatusCode.END
231
  return agent_return
232
  agent_return.state = AgentStatusCode.END
233
  return agent_return
 
234
 
235
  def stream_chat(self, message, **kwargs):
236
  if isinstance(message, str):
 
194
  WebSearchGraph.searcher_cfg = searcher_cfg
195
  super().__init__(llm=llm, action_executor=None, protocol=protocol)
196
 
197
+ def generate(self, message, **kwargs):
198
  if isinstance(message, str):
199
  message = [{'role': 'user', 'content': message}]
200
  elif isinstance(message, dict):
 
211
  agent_return.inner_steps = deepcopy(inner_history)
212
  for _ in range(self.max_turn):
213
  prompt = self._protocol.format(inner_step=inner_history)
214
+ prompt = [
215
+ ''.join([p['role'] + ': ' + p['content'] for p in prompt])
216
+ ]
217
  code = None
218
+ response = self.llm.generate(
219
+ prompt,
220
+ **kwargs,
221
+ )[0]
222
  response = response.replace('<|plugin|>', '<|interpreter|>')
223
  _, language, action = self._protocol.parse(response)
224
  if not language and not action:
225
  continue
226
  code = action['parameters']['command'] if action else ''
 
227
  agent_return.response = language if not code else code
228
+
229
  inner_history.append({'role': 'language', 'content': language})
230
  print(colored(response, 'blue'))
231
+
232
  if code:
233
+ self._process_code(agent_return, inner_history, code, as_dict, return_early)
 
234
  else:
235
  agent_return.state = AgentStatusCode.END
236
  return agent_return
237
  agent_return.state = AgentStatusCode.END
238
  return agent_return
239
+
240
 
241
  def stream_chat(self, message, **kwargs):
242
  if isinstance(message, str):
models/search_agent/utils.py ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import logging
3
+ from typing import List, Optional, Union
4
+
5
+ from lagent.llms.base_llm import BaseModel
6
+ from lagent.schema import ModelStatusCode
7
+ from lagent.utils.util import filter_suffix
8
+
9
+
10
+ class LMDeployServer(BaseModel):
11
+ """
12
+
13
+ Args:
14
+ path (str): The path to the model.
15
+ It could be one of the following options:
16
+ - i) A local directory path of a turbomind model which is
17
+ converted by `lmdeploy convert` command or download from
18
+ ii) and iii).
19
+ - ii) The model_id of a lmdeploy-quantized model hosted
20
+ inside a model repo on huggingface.co, such as
21
+ "InternLM/internlm-chat-20b-4bit",
22
+ "lmdeploy/llama2-chat-70b-4bit", etc.
23
+ - iii) The model_id of a model hosted inside a model repo
24
+ on huggingface.co, such as "internlm/internlm-chat-7b",
25
+ "Qwen/Qwen-7B-Chat ", "baichuan-inc/Baichuan2-7B-Chat"
26
+ and so on.
27
+ model_name (str): needed when model_path is a pytorch model on
28
+ huggingface.co, such as "internlm-chat-7b",
29
+ "Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on.
30
+ server_name (str): host ip for serving
31
+ server_port (int): server port
32
+ tp (int): tensor parallel
33
+ log_level (str): set log level whose value among
34
+ [CRITICAL, ERROR, WARNING, INFO, DEBUG]
35
+ """
36
+
37
+ def __init__(self,
38
+ path: str,
39
+ model_name: Optional[str] = None,
40
+ server_name: str = '0.0.0.0',
41
+ server_port: int = 23333,
42
+ tp: int = 1,
43
+ log_level: str = 'WARNING',
44
+ serve_cfg=dict(),
45
+ **kwargs):
46
+ super().__init__(path=path, **kwargs)
47
+ self.model_name = model_name
48
+ # TODO get_logger issue in multi processing
49
+ import lmdeploy
50
+ self.client = lmdeploy.serve(
51
+ model_path=self.path,
52
+ model_name=model_name,
53
+ server_name=server_name,
54
+ server_port=server_port,
55
+ tp=tp,
56
+ log_level=log_level,
57
+ **serve_cfg)
58
+
59
+ def generate(self,
60
+ inputs: Union[str, List[str]],
61
+ session_id: int = 2967,
62
+ sequence_start: bool = True,
63
+ sequence_end: bool = True,
64
+ ignore_eos: bool = False,
65
+ skip_special_tokens: Optional[bool] = False,
66
+ timeout: int = 30,
67
+ **kwargs) -> List[str]:
68
+ """Start a new round conversation of a session. Return the chat
69
+ completions in non-stream mode.
70
+
71
+ Args:
72
+ inputs (str, List[str]): user's prompt(s) in this round
73
+ session_id (int): the identical id of a session
74
+ sequence_start (bool): start flag of a session
75
+ sequence_end (bool): end flag of a session
76
+ ignore_eos (bool): indicator for ignoring eos
77
+ skip_special_tokens (bool): Whether or not to remove special tokens
78
+ in the decoding. Default to be False.
79
+ timeout (int): max time to wait for response
80
+ Returns:
81
+ (a list of/batched) text/chat completion
82
+ """
83
+
84
+ batched = True
85
+ if isinstance(inputs, str):
86
+ inputs = [inputs]
87
+ batched = False
88
+
89
+ gen_params = self.update_gen_params(**kwargs)
90
+ max_new_tokens = gen_params.pop('max_new_tokens')
91
+ gen_params.update(max_tokens=max_new_tokens)
92
+
93
+ resp = [''] * len(inputs)
94
+ for text in self.client.completions_v1(
95
+ self.model_name,
96
+ inputs,
97
+ session_id=session_id,
98
+ sequence_start=sequence_start,
99
+ sequence_end=sequence_end,
100
+ stream=False,
101
+ ignore_eos=ignore_eos,
102
+ skip_special_tokens=skip_special_tokens,
103
+ timeout=timeout,
104
+ **gen_params):
105
+ resp = [
106
+ resp[i] + item['text']
107
+ for i, item in enumerate(text['choices'])
108
+ ]
109
+ # remove stop_words
110
+ resp = filter_suffix(resp, self.gen_params.get('stop_words'))
111
+ if not batched:
112
+ return resp[0]
113
+ return resp
114
+
115
+ def stream_chat(self,
116
+ inputs: List[dict],
117
+ session_id=0,
118
+ sequence_start: bool = True,
119
+ sequence_end: bool = True,
120
+ stream: bool = True,
121
+ ignore_eos: bool = False,
122
+ skip_special_tokens: Optional[bool] = False,
123
+ timeout: int = 30,
124
+ **kwargs):
125
+ """Start a new round conversation of a session. Return the chat
126
+ completions in stream mode.
127
+
128
+ Args:
129
+ session_id (int): the identical id of a session
130
+ inputs (List[dict]): user's inputs in this round conversation
131
+ sequence_start (bool): start flag of a session
132
+ sequence_end (bool): end flag of a session
133
+ stream (bool): return in a streaming format if enabled
134
+ ignore_eos (bool): indicator for ignoring eos
135
+ skip_special_tokens (bool): Whether or not to remove special tokens
136
+ in the decoding. Default to be False.
137
+ timeout (int): max time to wait for response
138
+ Returns:
139
+ tuple(Status, str, int): status, text/chat completion,
140
+ generated token number
141
+ """
142
+ gen_params = self.update_gen_params(**kwargs)
143
+ max_new_tokens = gen_params.pop('max_new_tokens')
144
+ gen_params.update(max_tokens=max_new_tokens)
145
+ prompt = self.template_parser(inputs)
146
+
147
+ resp = ''
148
+ finished = False
149
+ stop_words = self.gen_params.get('stop_words')
150
+ for text in self.client.completions_v1(
151
+ self.model_name,
152
+ prompt,
153
+ session_id=session_id,
154
+ sequence_start=sequence_start,
155
+ sequence_end=sequence_end,
156
+ stream=stream,
157
+ ignore_eos=ignore_eos,
158
+ skip_special_tokens=skip_special_tokens,
159
+ timeout=timeout,
160
+ **gen_params):
161
+ resp += text['choices'][0]['text']
162
+ if not resp:
163
+ continue
164
+ # remove stop_words
165
+ for sw in stop_words:
166
+ if sw in resp:
167
+ resp = filter_suffix(resp, stop_words)
168
+ finished = True
169
+ break
170
+ yield ModelStatusCode.STREAM_ING, resp, None
171
+ if finished:
172
+ break
173
+ yield ModelStatusCode.END, resp, None
models/vsa_model.py CHANGED
@@ -6,7 +6,6 @@
6
  # https://github.com/IDEA-Research/GroundingDINO
7
  # https://github.com/InternLM/MindSearch
8
  # --------------------------------------------------------
9
- import spaces
10
  import os
11
  import copy
12
 
@@ -25,7 +24,7 @@ from llava.mm_utils import process_images, tokenizer_image_token, get_model_name
25
 
26
  from datetime import datetime
27
  from lagent.actions import ActionExecutor, BingBrowser
28
- from lagent.llms import INTERNLM2_META, LMDeployServer
29
  from lagent.schema import AgentReturn, AgentStatusCode
30
  from lagent.schema import AgentStatusCode
31
  from .search_agent.mindsearch_agent import (
@@ -37,6 +36,7 @@ from .search_agent.mindsearch_prompt import (
37
  searcher_input_template_cn, searcher_input_template_en,
38
  searcher_system_prompt_cn, searcher_system_prompt_en
39
  )
 
40
 
41
  from typing import List, Union
42
 
@@ -210,7 +210,24 @@ class WebSearcher:
210
  raise Exception('Unsupported model for web searcher.')
211
 
212
  self.lang = lang
213
- llm = LMDeployServer(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214
  path = model_path,
215
  model_name = model_name,
216
  meta_template = INTERNLM2_META,
@@ -219,7 +236,7 @@ class WebSearcher:
219
  temperature = temperature,
220
  max_new_tokens = max_new_tokens,
221
  repetition_penalty = repetition_penalty,
222
- stop_words = ['<|im_end|>']
223
  )
224
  self.agent = MindSearchAgent(
225
  llm = llm,
@@ -259,6 +276,14 @@ class WebSearcher:
259
  with open('temp/search_result_{}.txt'.format(qid), 'w', encoding='utf-8') as wf:
260
  wf.write(result)
261
  results.append(result)
 
 
 
 
 
 
 
 
262
  return results
263
 
264
 
@@ -296,28 +321,17 @@ class VisionSearchAssistant:
296
  self.vlm_load_4bit = vlm_load_4bit
297
  self.vlm_load_8bit = vlm_load_8bit
298
  self.use_correlate = True
 
 
 
 
299
 
300
- @spaces.GPU
301
  def app_run(
302
  self,
303
  image: Union[str, Image.Image, np.ndarray],
304
  text: str,
305
  ground_classes: List[str] = COCO_CLASSES
306
- ):
307
- self.searcher = WebSearcher(
308
- model_path = self.search_model
309
- )
310
- self.grounder = VisualGrounder(
311
- model_path = self.ground_model,
312
- device = self.ground_device,
313
- )
314
- self.vlm = VLM(
315
- model_path = self.vlm_model,
316
- device = self.vlm_device,
317
- load_4bit = self.vlm_load_4bit,
318
- load_8bit = self.vlm_load_8bit
319
- )
320
-
321
  # Create and clear the temporary directory.
322
  if not os.access('temp', os.F_OK):
323
  os.makedirs('temp')
@@ -338,6 +352,10 @@ class VisionSearchAssistant:
338
  raise Exception('Unsupported input image format.')
339
 
340
  # Visual Grounding
 
 
 
 
341
  bboxes, labels, out_image = self.grounder(in_image, classes = ground_classes)
342
  yield out_image, 'ground'
343
 
@@ -352,7 +370,16 @@ class VisionSearchAssistant:
352
  det_images.append(in_image)
353
  labels.append('image')
354
 
 
 
 
355
  # Visual Captioning
 
 
 
 
 
 
356
  captions = []
357
  for det_image, label in zip(det_images, labels):
358
  inp = get_caption_prompt(label, text)
@@ -386,11 +413,20 @@ class VisionSearchAssistant:
386
 
387
  queries = [text + " " + query for query in queries]
388
 
 
 
 
389
  # Web Searching
390
  contexts = self.searcher(queries)
391
  yield contexts, 'search'
392
 
393
  # QA
 
 
 
 
 
 
394
  TOKEN_LIMIT = 3500
395
  max_length_per_context = TOKEN_LIMIT // len(contexts)
396
  for cid, context in enumerate(contexts):
@@ -403,4 +439,7 @@ class VisionSearchAssistant:
403
  wf.write(answer)
404
  print(answer)
405
 
406
- yield answer, 'answer'
 
 
 
 
6
  # https://github.com/IDEA-Research/GroundingDINO
7
  # https://github.com/InternLM/MindSearch
8
  # --------------------------------------------------------
 
9
  import os
10
  import copy
11
 
 
24
 
25
  from datetime import datetime
26
  from lagent.actions import ActionExecutor, BingBrowser
27
+ from lagent.llms import INTERNLM2_META, LMDeployServer, LMDeployPipeline
28
  from lagent.schema import AgentReturn, AgentStatusCode
29
  from lagent.schema import AgentStatusCode
30
  from .search_agent.mindsearch_agent import (
 
36
  searcher_input_template_cn, searcher_input_template_en,
37
  searcher_system_prompt_cn, searcher_system_prompt_en
38
  )
39
+ from lmdeploy.messages import PytorchEngineConfig
40
 
41
  from typing import List, Union
42
 
 
210
  raise Exception('Unsupported model for web searcher.')
211
 
212
  self.lang = lang
213
+ backend_config = PytorchEngineConfig(
214
+ max_batch_size = 1,
215
+ )
216
+ # llm = LMDeployServer(
217
+ # path = model_path,
218
+ # model_name = model_name,
219
+ # meta_template = INTERNLM2_META,
220
+ # top_p = top_p,
221
+ # top_k = top_k,
222
+ # temperature = temperature,
223
+ # max_new_tokens = max_new_tokens,
224
+ # repetition_penalty = repetition_penalty,
225
+ # stop_words = ['<|im_end|>'],
226
+ # serve_cfg = dict(
227
+ # backend_config = backend_config
228
+ # )
229
+ # )
230
+ llm = LMDeployPipeline(
231
  path = model_path,
232
  model_name = model_name,
233
  meta_template = INTERNLM2_META,
 
236
  temperature = temperature,
237
  max_new_tokens = max_new_tokens,
238
  repetition_penalty = repetition_penalty,
239
+ stop_words = ['<|im_end|>'],
240
  )
241
  self.agent = MindSearchAgent(
242
  llm = llm,
 
276
  with open('temp/search_result_{}.txt'.format(qid), 'w', encoding='utf-8') as wf:
277
  wf.write(result)
278
  results.append(result)
279
+ # for qid, query in enumerate(queries):
280
+ # result = None
281
+ # agent_return = self.agent.generate(query)
282
+ # result = agent_return.response
283
+ # assert result is not None
284
+ # with open('temp/search_result_{}.txt'.format(qid), 'w', encoding='utf-8') as wf:
285
+ # wf.write(result)
286
+ # results.append(result)
287
  return results
288
 
289
 
 
321
  self.vlm_load_4bit = vlm_load_4bit
322
  self.vlm_load_8bit = vlm_load_8bit
323
  self.use_correlate = True
324
+
325
+ self.searcher = WebSearcher(
326
+ model_path = self.search_model
327
+ )
328
 
 
329
  def app_run(
330
  self,
331
  image: Union[str, Image.Image, np.ndarray],
332
  text: str,
333
  ground_classes: List[str] = COCO_CLASSES
334
+ ):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
335
  # Create and clear the temporary directory.
336
  if not os.access('temp', os.F_OK):
337
  os.makedirs('temp')
 
352
  raise Exception('Unsupported input image format.')
353
 
354
  # Visual Grounding
355
+ self.grounder = VisualGrounder(
356
+ model_path = self.ground_model,
357
+ device = self.ground_device,
358
+ )
359
  bboxes, labels, out_image = self.grounder(in_image, classes = ground_classes)
360
  yield out_image, 'ground'
361
 
 
370
  det_images.append(in_image)
371
  labels.append('image')
372
 
373
+ del self.grounder
374
+ torch.cuda.empty_cache()
375
+
376
  # Visual Captioning
377
+ self.vlm = VLM(
378
+ model_path = self.vlm_model,
379
+ device = self.vlm_device,
380
+ load_4bit = self.vlm_load_4bit,
381
+ load_8bit = self.vlm_load_8bit
382
+ )
383
  captions = []
384
  for det_image, label in zip(det_images, labels):
385
  inp = get_caption_prompt(label, text)
 
413
 
414
  queries = [text + " " + query for query in queries]
415
 
416
+ del self.vlm
417
+ torch.cuda.empty_cache()
418
+
419
  # Web Searching
420
  contexts = self.searcher(queries)
421
  yield contexts, 'search'
422
 
423
  # QA
424
+ self.vlm = VLM(
425
+ model_path = self.vlm_model,
426
+ device = self.vlm_device,
427
+ load_4bit = self.vlm_load_4bit,
428
+ load_8bit = self.vlm_load_8bit
429
+ )
430
  TOKEN_LIMIT = 3500
431
  max_length_per_context = TOKEN_LIMIT // len(contexts)
432
  for cid, context in enumerate(contexts):
 
439
  wf.write(answer)
440
  print(answer)
441
 
442
+ yield answer, 'answer'
443
+
444
+ del self.vlm
445
+ torch.cuda.empty_cache()