import json import logging import queue import random import re import threading import uuid from collections import defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed from copy import deepcopy from dataclasses import asdict from typing import Dict, List, Optional from lagent.actions import ActionExecutor from lagent.agents import BaseAgent, Internlm2Agent from lagent.agents.internlm2_agent import Internlm2Protocol from lagent.schema import AgentReturn, AgentStatusCode, ModelStatusCode from termcolor import colored 'Logging Initialization' logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class SearcherAgent(Internlm2Agent): def __init__(self, template='{query}', **kwargs) -> None: super().__init__(**kwargs) self.template = template def stream_chat(self, question: str, root_question: str = None, parent_response: List[dict] = None, **kwargs) -> AgentReturn: message = self.template['input'].format(question=question, topic=root_question) if parent_response: if 'context' in self.template: parent_response = [ self.template['context'].format(**item) for item in parent_response ] message = '\n'.join(parent_response + [message]) print(colored(f'current query: {message}', 'green')) for agent_return in super().stream_chat(message, session_id=random.randint( 0, 999999), **kwargs): agent_return.type = 'searcher' agent_return.content = question yield deepcopy(agent_return) class MindSearchProtocol(Internlm2Protocol): def __init__( self, meta_prompt: str = None, interpreter_prompt: str = None, plugin_prompt: str = None, few_shot: Optional[List] = None, response_prompt: str = None, language: Dict = dict( begin='', end='', belong='assistant', ), tool: Dict = dict( begin='{start_token}{name}\n', start_token='<|action_start|>', name_map=dict(plugin='<|plugin|>', interpreter='<|interpreter|>'), belong='assistant', end='<|action_end|>\n', ), execute: Dict = dict(role='execute', begin='', end='', fallback_role='environment'), ) -> None: self.response_prompt = response_prompt super().__init__(meta_prompt=meta_prompt, interpreter_prompt=interpreter_prompt, plugin_prompt=plugin_prompt, few_shot=few_shot, language=language, tool=tool, execute=execute) def format(self, inner_step: List[Dict], plugin_executor: ActionExecutor = None, **kwargs) -> list: formatted = [] if self.meta_prompt: formatted.append(dict(role='system', content=self.meta_prompt)) if self.plugin_prompt: plugin_prompt = self.plugin_prompt.format(tool_info=json.dumps( plugin_executor.get_actions_info(), ensure_ascii=False)) formatted.append( dict(role='system', content=plugin_prompt, name='plugin')) if self.interpreter_prompt: formatted.append( dict(role='system', content=self.interpreter_prompt, name='interpreter')) if self.few_shot: for few_shot in self.few_shot: formatted += self.format_sub_role(few_shot) formatted += self.format_sub_role(inner_step) return formatted class WebSearchGraph: end_signal = 'end' searcher_cfg = dict() def __init__(self): self.nodes = {} self.adjacency_list = defaultdict(list) self.executor = ThreadPoolExecutor(max_workers=10) # self.executor = ThreadPoolExecutor(max_workers=1) self.future_to_query = dict() self.searcher_resp_queue = queue.Queue() def add_root_node(self, node_content, node_name='root'): self.nodes[node_name] = dict(content=node_content, type='root') self.adjacency_list[node_name] = [] self.searcher_resp_queue.put((node_name, self.nodes[node_name], [])) def add_node(self, node_name, node_content): self.nodes[node_name] = dict(content=node_content, type='searcher') self.adjacency_list[node_name] = [] def model_stream_thread(): agent = SearcherAgent(**self.searcher_cfg) try: parent_nodes = [] for start_node, adj in self.adjacency_list.items(): for neighbor in adj: if node_name == neighbor[ 'name'] and start_node in self.nodes and 'response' in self.nodes[ start_node]: parent_nodes.append(self.nodes[start_node]) parent_response = [ dict(question=node['content'], answer=node['response']) for node in parent_nodes ] for answer in agent.stream_chat( node_content, self.nodes['root']['content'], parent_response=parent_response): self.searcher_resp_queue.put( deepcopy((node_name, dict(response=answer.response, detail=answer), []))) self.nodes[node_name]['response'] = answer.response self.nodes[node_name]['detail'] = answer except Exception as e: logger.exception(f'Error in model_stream_thread: {e}') self.future_to_query[self.executor.submit( model_stream_thread)] = f'{node_name}-{node_content}' def add_response_node(self, node_name='response'): self.nodes[node_name] = dict(type='end') self.searcher_resp_queue.put((node_name, self.nodes[node_name], [])) def add_edge(self, start_node, end_node): self.adjacency_list[start_node].append( dict(id=str(uuid.uuid4()), name=end_node, state=2)) self.searcher_resp_queue.put((start_node, self.nodes[start_node], self.adjacency_list[start_node])) def reset(self): self.nodes = {} self.adjacency_list = defaultdict(list) def node(self, node_name): return self.nodes[node_name].copy() class MindSearchAgent(BaseAgent): def __init__(self, llm, searcher_cfg, protocol=MindSearchProtocol(), max_turn=10): self.local_dict = {} self.ptr = 0 self.llm = llm self.max_turn = max_turn WebSearchGraph.searcher_cfg = searcher_cfg super().__init__(llm=llm, action_executor=None, protocol=protocol) def generate(self, message, **kwargs): if isinstance(message, str): message = [{'role': 'user', 'content': message}] elif isinstance(message, dict): message = [message] as_dict = kwargs.pop('as_dict', False) return_early = kwargs.pop('return_early', False) self.local_dict.clear() self.ptr = 0 inner_history = message[:] agent_return = AgentReturn() agent_return.type = 'planner' agent_return.nodes = {} agent_return.adjacency_list = {} agent_return.inner_steps = deepcopy(inner_history) for _ in range(self.max_turn): prompt = self._protocol.format(inner_step=inner_history) prompt = [ ''.join([p['role'] + ': ' + p['content'] for p in prompt]) ] code = None response = self.llm.generate( prompt, **kwargs, )[0] response = response.replace('<|plugin|>', '<|interpreter|>') _, language, action = self._protocol.parse(response) if not language and not action: continue code = action['parameters']['command'] if action else '' agent_return.response = language if not code else code inner_history.append({'role': 'language', 'content': language}) print(colored(response, 'blue')) if code: self._process_code(agent_return, inner_history, code, as_dict, return_early) else: agent_return.state = AgentStatusCode.END return agent_return agent_return.state = AgentStatusCode.END return agent_return def stream_chat(self, message, **kwargs): if isinstance(message, str): message = [{'role': 'user', 'content': message}] elif isinstance(message, dict): message = [message] as_dict = kwargs.pop('as_dict', False) return_early = kwargs.pop('return_early', False) self.local_dict.clear() self.ptr = 0 inner_history = message[:] agent_return = AgentReturn() agent_return.type = 'planner' agent_return.nodes = {} agent_return.adjacency_list = {} agent_return.inner_steps = deepcopy(inner_history) for _ in range(self.max_turn): prompt = self._protocol.format(inner_step=inner_history) code = None for model_state, response, _ in self.llm.stream_chat( prompt, session_id=random.randint(0, 999999), **kwargs): if model_state.value < 0: agent_return.state = getattr(AgentStatusCode, model_state.name) yield deepcopy(agent_return) return response = response.replace('<|plugin|>', '<|interpreter|>') _, language, action = self._protocol.parse(response) if not language and not action: continue code = action['parameters']['command'] if action else '' agent_return.state = self._determine_agent_state( model_state, code, agent_return) agent_return.response = language if not code else code # if agent_return.state == AgentStatusCode.STREAM_ING: yield deepcopy(agent_return) inner_history.append({'role': 'language', 'content': language}) print(colored(response, 'blue')) if code: yield from self._process_code(agent_return, inner_history, code, as_dict, return_early) else: agent_return.state = AgentStatusCode.END yield deepcopy(agent_return) return agent_return.state = AgentStatusCode.END yield deepcopy(agent_return) def _determine_agent_state(self, model_state, code, agent_return): if code: return (AgentStatusCode.PLUGIN_START if model_state == ModelStatusCode.END else AgentStatusCode.PLUGIN_START) return (AgentStatusCode.ANSWER_ING if agent_return.nodes and 'response' in agent_return.nodes else AgentStatusCode.STREAM_ING) def _process_code_simple(self, agent_return, inner_history, code, as_dict=False, return_early=False): for node_name, node, adj in self.execute_code( code, return_early=return_early): if as_dict and 'detail' in node: node['detail'] = asdict(node['detail']) if not adj: agent_return.nodes[node_name] = node else: agent_return.adjacency_list[node_name] = adj # state 1进行中,2未开始,3已结束 for start_node, neighbors in agent_return.adjacency_list.items(): for neighbor in neighbors: if neighbor['name'] not in agent_return.nodes: state = 2 elif 'detail' not in agent_return.nodes[neighbor['name']]: state = 2 elif agent_return.nodes[neighbor['name']][ 'detail'].state == AgentStatusCode.END: state = 3 else: state = 1 neighbor['state'] = state if not adj: # yield deepcopy((agent_return, node_name)) pass reference, references_url = self._generate_reference( agent_return, code, as_dict) inner_history.append({ 'role': 'tool', 'content': code, 'name': 'plugin' }) inner_history.append({ 'role': 'environment', 'content': reference, 'name': 'plugin' }) agent_return.inner_steps = deepcopy(inner_history) agent_return.state = AgentStatusCode.PLUGIN_RETURN agent_return.references.update(references_url) return deepcopy(agent_return) def _process_code(self, agent_return, inner_history, code, as_dict=False, return_early=False): for node_name, node, adj in self.execute_code( code, return_early=return_early): if as_dict and 'detail' in node: node['detail'] = asdict(node['detail']) if not adj: agent_return.nodes[node_name] = node else: agent_return.adjacency_list[node_name] = adj # state 1进行中,2未开始,3已结束 for start_node, neighbors in agent_return.adjacency_list.items(): for neighbor in neighbors: if neighbor['name'] not in agent_return.nodes: state = 2 elif 'detail' not in agent_return.nodes[neighbor['name']]: state = 2 elif agent_return.nodes[neighbor['name']][ 'detail'].state == AgentStatusCode.END: state = 3 else: state = 1 neighbor['state'] = state if not adj: yield deepcopy((agent_return, node_name)) reference, references_url = self._generate_reference( agent_return, code, as_dict) inner_history.append({ 'role': 'tool', 'content': code, 'name': 'plugin' }) inner_history.append({ 'role': 'environment', 'content': reference, 'name': 'plugin' }) agent_return.inner_steps = deepcopy(inner_history) agent_return.state = AgentStatusCode.PLUGIN_RETURN agent_return.references.update(references_url) yield deepcopy(agent_return) def _generate_reference(self, agent_return, code, as_dict): node_list = [ node.strip().strip('\"') for node in re.findall( r'graph\.node\("((?:[^"\\]|\\.)*?)"\)', code) ] if 'add_response_node' in code: return self._protocol.response_prompt, dict() references = [] references_url = dict() for node_name in node_list: ref_results = None ref2url = None if as_dict: actions = agent_return.nodes[node_name]['detail']['actions'] else: actions = agent_return.nodes[node_name]['detail'].actions if actions: ref_results = actions[0]['result'][0][ 'content'] if as_dict else actions[0].result[0]['content'] if ref_results: ref_results = json.loads(ref_results) ref2url = { idx: item['url'] for idx, item in ref_results.items() } ref = f"## {node_name}\n\n{agent_return.nodes[node_name]['response']}\n" updated_ref = re.sub( r'\[\[(\d+)\]\]', lambda match: f'[[{int(match.group(1)) + self.ptr}]]', ref) numbers = [int(n) for n in re.findall(r'\[\[(\d+)\]\]', ref)] if numbers: try: assert all(str(elem) in ref2url for elem in numbers) except Exception as exc: logger.info(f'Illegal reference id: {str(exc)}') if ref2url: references_url.update({ str(idx + self.ptr): ref2url[str(idx)] for idx in set(numbers) if str(idx) in ref2url }) self.ptr += max(numbers) + 1 references.append(updated_ref) return '\n'.join(references), references_url def execute_code(self, command: str, return_early=False): def extract_code(text: str) -> str: text = re.sub(r'from ([\w.]+) import WebSearchGraph', '', text) triple_match = re.search(r'```[^\n]*\n(.+?)```', text, re.DOTALL) single_match = re.search(r'`([^`]*)`', text, re.DOTALL) if triple_match: return triple_match.group(1) elif single_match: return single_match.group(1) return text def run_command(cmd): try: exec(cmd, globals(), self.local_dict) plan_graph = self.local_dict.get('graph') assert plan_graph is not None for future in as_completed(plan_graph.future_to_query): future.result() plan_graph.future_to_query.clear() plan_graph.searcher_resp_queue.put(plan_graph.end_signal) except Exception as e: logger.exception(f'Error executing code: {e}') raise command = extract_code(command) producer_thread = threading.Thread(target=run_command, args=(command, )) producer_thread.start() responses = defaultdict(list) ordered_nodes = [] active_node = None while True: try: item = self.local_dict.get('graph').searcher_resp_queue.get( timeout=60) if item is WebSearchGraph.end_signal: for node_name in ordered_nodes: # resp = None for resp in responses[node_name]: yield deepcopy(resp) # if resp: # assert resp[1][ # 'detail'].state == AgentStatusCode.END break node_name, node, adj = item if node_name in ['root', 'response']: yield deepcopy((node_name, node, adj)) else: if node_name not in ordered_nodes: ordered_nodes.append(node_name) responses[node_name].append((node_name, node, adj)) if not active_node and ordered_nodes: active_node = ordered_nodes[0] while active_node and responses[active_node]: if return_early: if 'detail' in responses[active_node][-1][ 1] and responses[active_node][-1][1][ 'detail'].state == AgentStatusCode.END: item = responses[active_node][-1] else: item = responses[active_node].pop(0) else: item = responses[active_node].pop(0) if 'detail' in item[1] and item[1][ 'detail'].state == AgentStatusCode.END: ordered_nodes.pop(0) responses[active_node].clear() active_node = None yield deepcopy(item) except queue.Empty: if not producer_thread.is_alive(): break producer_thread.join() return class SimpleSearchAgent(BaseAgent): def __init__(self, llm, searcher_cfg, protocol=MindSearchProtocol(), max_turn=10): self.local_dict = {} self.ptr = 0 self.llm = llm self.max_turn = max_turn WebSearchGraph.searcher_cfg = searcher_cfg super().__init__(llm=llm, action_executor=None, protocol=protocol) def stream_chat(self, message, **kwargs): if isinstance(message, str): message = [{'role': 'user', 'content': message}] elif isinstance(message, dict): message = [message] self.local_dict.clear() self.ptr = 0 inner_history = message[:] agent_return = AgentReturn() agent_return.type = 'planner' agent_return.nodes = {} agent_return.adjacency_list = {} agent_return.inner_steps = deepcopy(inner_history) agent = SearcherAgent(**WebSearchGraph.searcher_cfg) for agent_return in agent.stream_chat( message[0], message[0], None ): yield agent_return agent_return.state = AgentStatusCode.END return agent_return