File size: 11,867 Bytes
357dacf cdf7569 357dacf bde7af1 357dacf cdf7569 357dacf cdf7569 357dacf cdf7569 357dacf cdf7569 357dacf cdf7569 357dacf bde7af1 357dacf bde7af1 357dacf cdf7569 357dacf cdf7569 357dacf cdf7569 357dacf bde7af1 357dacf bde7af1 357dacf bde7af1 470e643 357dacf bde7af1 357dacf cdf7569 357dacf cdf7569 357dacf 27c0505 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
from dotenv import load_dotenv
import os
import json
import redis
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
AutoModelForCausalLM,
TrainingArguments,
Trainer,
)
from fastapi import FastAPI, HTTPException, Request
from fastapi.responses import HTMLResponse
import multiprocessing
import time
import uuid
load_dotenv()
REDIS_HOST = os.getenv('REDIS_HOST')
REDIS_PORT = os.getenv('REDIS_PORT')
REDIS_PASSWORD = os.getenv('REDIS_PASSWORD')
app = FastAPI()
default_language = "es"
class ChatbotService:
def __init__(self):
self.redis_client = redis.StrictRedis(host=REDIS_HOST, port=REDIS_PORT, password=REDIS_PASSWORD, decode_responses=True)
self.model_name = "response_model"
self.tokenizer_name = "response_tokenizer"
self.model = self.load_model_from_redis()
self.tokenizer = self.load_tokenizer_from_redis()
def get_response(self, user_id, message, language=default_language):
if self.model is None or self.tokenizer is None:
return "El modelo aún no está listo. Por favor, inténtelo de nuevo más tarde."
input_text = f"Usuario: {message} Asistente:"
input_ids = self.tokenizer.encode(input_text, return_tensors="pt").to("cpu")
with torch.no_grad():
output = self.model.generate(input_ids=input_ids, max_length=100, num_beams=5, no_repeat_ngram_size=2, early_stopping=True)
response = self.tokenizer.decode(output[0], skip_special_tokens=True)
response = response.replace(input_text, "").strip()
return response
def load_model_from_redis(self):
model_data_bytes = self.redis_client.get(f"model:{self.model_name}")
if model_data_bytes:
model = AutoModelForCausalLM.from_pretrained("gpt2")
model.load_state_dict(torch.load(model_data_bytes))
return model
return None
def load_tokenizer_from_redis(self):
tokenizer_data_bytes = self.redis_client.get(f"tokenizer:{self.tokenizer_name}")
if tokenizer_data_bytes:
tokenizer = AutoTokenizer.from_pretrained("gpt2")
tokenizer.add_tokens(json.loads(tokenizer_data_bytes))
tokenizer.pad_token = tokenizer.eos_token
return tokenizer
return None
chatbot_service = ChatbotService()
class UnifiedModel(AutoModelForSequenceClassification):
def __init__(self, config):
super().__init__(config)
@staticmethod
def load_model_from_redis(redis_client):
model_name = "unified_model"
model_path = f"models/{model_name}"
if redis_client.exists(f"model:{model_name}"):
redis_client.delete(f"model:{model_name}")
if not os.path.exists(model_path):
model = UnifiedModel.from_pretrained("gpt2", num_labels=3)
model.save_pretrained(model_path)
else:
model = UnifiedModel.from_pretrained(model_path)
return model
class SyntheticDataset(Dataset):
def __init__(self, tokenizer, data):
self.tokenizer = tokenizer
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
item = self.data[idx]
text = item['text']
label = item['label']
tokens = self.tokenizer(text, padding="max_length", truncation=True, max_length=128, return_tensors="pt")
return {"input_ids": tokens["input_ids"].squeeze(), "attention_mask": tokens["attention_mask"].squeeze(), "labels": label}
conversation_history = {}
@app.post("/process")
async def process(request: Request):
data = await request.json()
redis_client = redis.StrictRedis(host=REDIS_HOST, port=REDIS_PORT, password=REDIS_PASSWORD, decode_responses=True)
tokenizer_name = "unified_tokenizer"
tokenizer_data_bytes = redis_client.get(f"tokenizer:{tokenizer_name}")
if tokenizer_data_bytes:
tokenizer = AutoTokenizer.from_pretrained("gpt2")
tokenizer.add_tokens(json.loads(tokenizer_data_bytes))
tokenizer.pad_token = tokenizer.eos_token
else:
tokenizer = AutoTokenizer.from_pretrained("gpt2")
tokenizer.pad_token = tokenizer.eos_token
unified_model = UnifiedModel.load_model_from_redis(redis_client)
unified_model.to(torch.device("cpu"))
if data.get("train"):
user_data = data.get("user_data", [])
if not user_data:
user_data = [
{"text": "Hola", "label": 1},
{"text": "Necesito ayuda", "label": 2},
{"text": "No entiendo", "label": 0}
]
redis_client.rpush("training_queue", json.dumps({
"tokenizers": {tokenizer_name: tokenizer.get_vocab()},
"data": user_data
}))
return {"message": "Training data received. Model will be updated asynchronously."}
elif data.get("message"):
user_id = data.get("user_id")
text = data['message']
language = data.get("language", default_language)
if user_id not in conversation_history:
conversation_history[user_id] = []
conversation_history[user_id].append(text)
contextualized_text = " ".join(conversation_history[user_id][-3:])
tokenized_input = tokenizer(contextualized_text, return_tensors="pt")
with torch.no_grad():
logits = unified_model(**tokenized_input).logits
predicted_class = torch.argmax(logits, dim=-1).item()
response = chatbot_service.get_response(user_id, contextualized_text, language)
redis_client.rpush("training_queue", json.dumps({
"tokenizers": {tokenizer_name: tokenizer.get_vocab()},
"data": [{"text": contextualized_text, "label": predicted_class}]
}))
return {"answer": response}
else:
raise HTTPException(status_code=400, detail="Request must contain 'train' or 'message'.")
@app.get("/")
async def get_home():
user_id = str(uuid.uuid4())
html_code = f"""
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Chatbot</title>
<style>
body {{
font-family: 'Arial', sans-serif;
background-color: #f4f4f9;
margin: 0;
padding: 0;
display: flex;
align-items: center;
justify-content: center;
min-height: 100vh;
}}
.container {{
background-color: #fff;
border-radius: 10px;
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);
overflow: hidden;
width: 400px;
max-width: 90%;
}}
h1 {{
color: #333;
text-align: center;
padding: 20px;
margin: 0;
background-color: #f8f9fa;
border-bottom: 1px solid #eee;
}}
#chatbox {{
height: 300px;
overflow-y: auto;
padding: 10px;
border-bottom: 1px solid #eee;
}}
.message {{
margin-bottom: 10px;
padding: 10px;
border-radius: 5px;
}}
.message.user {{
background-color: #e1f5fe;
text-align: right;
}}
.message.bot {{
background-color: #f1f1f1;
text-align: left;
}}
#input {{
display: flex;
padding: 10px;
}}
#input textarea {{
flex: 1;
padding: 10px;
border: 1px solid #ddd;
border-radius: 4px;
margin-right: 10px;
}}
#input button {{
padding: 10px 20px;
border: none;
border-radius: 4px;
background-color: #007bff;
color: #fff;
cursor: pointer;
}}
#input button:hover {{
background-color: #0056b3;
}}
</style>
</head>
<body>
<div class="container">
<h1>Chatbot</h1>
<div id="chatbox"></div>
<div id="input">
<textarea id="message" rows="3" placeholder="Escribe tu mensaje aquí..."></textarea>
<button id="send">Enviar</button>
</div>
</div>
<script>
const chatbox = document.getElementById('chatbox');
const messageInput = document.getElementById('message');
const sendButton = document.getElementById('send');
function appendMessage(text, sender) {{
const messageDiv = document.createElement('div');
messageDiv.classList.add('message', sender);
messageDiv.textContent = text;
chatbox.appendChild(messageDiv);
chatbox.scrollTop = chatbox.scrollHeight;
}}
async function sendMessage() {{
const message = messageInput.value;
if (!message.trim()) return;
appendMessage(message, 'user');
messageInput.value = '';
const response = await fetch('/process', {{
method: 'POST',
headers: {{
'Content-Type': 'application/json'
}},
body: JSON.stringify({{
message: message,
user_id: '{user_id}'
}})
}});
const data = await response.json();
appendMessage(data.answer, 'bot');
}}
sendButton.addEventListener('click', sendMessage);
messageInput.addEventListener('keypress', (e) => {{
if (e.key === 'Enter' && !e.shiftKey) {{
e.preventDefault();
sendMessage();
}}
}});
</script>
</body>
</html>
"""
return HTMLResponse(content=html_code)
def train_unified_model():
redis_client = redis.StrictRedis(host=REDIS_HOST, port=REDIS_PORT, password=REDIS_PASSWORD, decode_responses=True)
while True:
training_queue = redis_client.lrange("training_queue", 0, -1)
if training_queue:
for item in training_queue:
item_data = json.loads(item)
tokenizer_data = item_data["tokenizers"]
tokenizer_name = list(tokenizer_data.keys())[0]
tokenizer = AutoTokenizer.from_pretrained("gpt2")
tokenizer.add_tokens(json.loads(tokenizer_data[tokenizer_name]))
tokenizer.pad_token = tokenizer.eos_token
data = item_data["data"]
dataset = SyntheticDataset(tokenizer, data)
model_name = "unified_model"
model_path = f"models/{model_name}"
model = UnifiedModel.from_pretrained(model_path)
training_args = TrainingArguments(
output_dir="./results",
per_device_train_batch_size=8,
num_train_epochs=3,
)
trainer = Trainer(model=model, args=training_args, train_dataset=dataset)
trainer.train()
model.save_pretrained(model_path)
redis_client.delete("training_queue")
time.sleep(60)
if __name__ == "__main__":
training_process = multiprocessing.Process(target=train_unified_model)
training_process.start()
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |