File size: 15,819 Bytes
357dacf
 
 
 
 
 
 
 
cdf7569
 
f52a035
 
357dacf
f52a035
357dacf
 
 
 
9a1cd7f
fc69718
f52a035
357dacf
 
 
 
 
 
 
 
 
 
 
 
 
54c30ca
357dacf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a205c7
bde7af1
357dacf
 
 
 
 
cdf7569
 
 
357dacf
 
 
 
cdf7569
 
 
 
 
 
357dacf
cdf7569
 
357dacf
 
cdf7569
 
357dacf
 
 
 
 
 
 
 
 
cdf7569
 
357dacf
 
 
9a1cd7f
 
 
f52a035
 
 
 
357dacf
9a1cd7f
 
 
 
357dacf
 
 
8a205c7
bde7af1
357dacf
 
bde7af1
cdf7569
357dacf
 
9a1cd7f
 
 
 
 
 
357dacf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdf7569
357dacf
cdf7569
357dacf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bde7af1
 
357dacf
bde7af1
 
 
357dacf
bde7af1
 
470e643
357dacf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a1cd7f
06c62ed
357dacf
f5e811d
 
 
 
 
9a1cd7f
 
f5e811d
 
cdf7569
f5e811d
 
 
 
 
 
 
 
9a1cd7f
f5e811d
9a1cd7f
357dacf
f52a035
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
357dacf
 
 
f52a035
 
 
 
357dacf
27c0505
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
from dotenv import load_dotenv
import os
import json
import redis
from transformers import (
    AutoTokenizer,
    AutoModelForSequenceClassification,
    AutoModelForCausalLM,
    TrainingArguments,
    Trainer,
    AutoModelForTextToWaveform,
    pipeline,
)
from diffusers import FluxPipeline
from fastapi import FastAPI, HTTPException, Request
from fastapi.responses import HTMLResponse
import multiprocessing
import uuid
import torch
from torch.utils.data import Dataset
import numpy as np

load_dotenv()

REDIS_HOST = os.getenv('REDIS_HOST')
REDIS_PORT = os.getenv('REDIS_PORT')
REDIS_PASSWORD = os.getenv('REDIS_PASSWORD')

app = FastAPI()

default_language = "es"

class ChatbotService:
    def __init__(self):
        self.redis_client = redis.StrictRedis(host=REDIS_HOST, port=REDIS_PORT, password=REDIS_PASSWORD)
        self.model_name = "response_model"
        self.tokenizer_name = "response_tokenizer"
        self.model = self.load_model_from_redis()
        self.tokenizer = self.load_tokenizer_from_redis()

    def get_response(self, user_id, message, language=default_language):
        if self.model is None or self.tokenizer is None:
            return "El modelo aún no está listo. Por favor, inténtelo de nuevo más tarde."
        input_text = f"Usuario: {message} Asistente:"
        input_ids = self.tokenizer.encode(input_text, return_tensors="pt").to("cpu")
        with torch.no_grad():
            output = self.model.generate(input_ids=input_ids, max_length=100, num_beams=5, no_repeat_ngram_size=2, early_stopping=True)
        response = self.tokenizer.decode(output[0], skip_special_tokens=True)
        response = response.replace(input_text, "").strip()
        return response

    def load_model_from_redis(self):
        model_data_bytes = self.redis_client.get(f"model:{self.model_name}")
        if model_data_bytes:
            model = AutoModelForCausalLM.from_pretrained("gpt2")
            model.load_state_dict(torch.load(model_data_bytes))
            return model
        return None

    def load_tokenizer_from_redis(self):
        tokenizer_data_bytes = self.redis_client.get(f"tokenizer:{self.tokenizer_name}")
        if tokenizer_data_bytes:
            tokenizer = AutoTokenizer.from_pretrained("gpt2")
            tokenizer.add_tokens(json.loads(tokenizer_data_bytes.decode("utf-8")))
            tokenizer.pad_token = tokenizer.eos_token
            return tokenizer
        return None

chatbot_service = ChatbotService()

class UnifiedModel(AutoModelForSequenceClassification):
    def __init__(self, config):
        super().__init__(config)

    @staticmethod
    def load_model_from_redis(redis_client):
        model_name = "unified_model"
        model_path = f"models/{model_name}"
        if redis_client.exists(f"model:{model_name}"):
            redis_client.delete(f"model:{model_name}")
        if not os.path.exists(model_path):
            model = UnifiedModel.from_pretrained("gpt2", num_labels=3)
            model.save_pretrained(model_path)
        else:
            model = UnifiedModel.from_pretrained(model_path)
        return model

class SyntheticDataset(Dataset):
    def __init__(self, tokenizer, data):
        self.tokenizer = tokenizer
        self.data = data

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        item = self.data[idx]
        text = item['text']
        label = item['label']
        tokens = self.tokenizer(text, padding="max_length", truncation=True, max_length=128, return_tensors="pt")
        return {"input_ids": tokens["input_ids"].squeeze(), "attention_mask": tokens["attention_mask"].squeeze(), "labels": label}

conversation_history = {}

tokenizer_name = "unified_tokenizer"
tokenizer = None
unified_model = None
musicgen_tokenizer = AutoTokenizer.from_pretrained("facebook/musicgen-small")
musicgen_model = AutoModelForTextToWaveform.from_pretrained("facebook/musicgen-small")
image_pipeline = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
image_pipeline.enable_model_cpu_offload()

@app.on_event("startup")
async def startup_event():
    global tokenizer, unified_model
    redis_client = redis.StrictRedis(host=REDIS_HOST, port=REDIS_PORT, password=REDIS_PASSWORD)
    tokenizer_data_bytes = redis_client.get(f"tokenizer:{tokenizer_name}")
    if tokenizer_data_bytes:
        tokenizer = AutoTokenizer.from_pretrained("gpt2")
        tokenizer.add_tokens(json.loads(tokenizer_data_bytes.decode("utf-8")))
        tokenizer.pad_token = tokenizer.eos_token
    else:
        tokenizer = AutoTokenizer.from_pretrained("gpt2")
        tokenizer.pad_token = tokenizer.eos_token
    unified_model = UnifiedModel.load_model_from_redis(redis_client)
    unified_model.to(torch.device("cpu"))

@app.post("/process")
async def process(request: Request):
    global tokenizer, unified_model
    data = await request.json()
    redis_client = redis.StrictRedis(host=REDIS_HOST, port=REDIS_PORT, password=REDIS_PASSWORD)

    if data.get("train"):
        user_data = data.get("user_data", [])
        if not user_data:
            user_data = [
                {"text": "Hola", "label": 1},
                {"text": "Necesito ayuda", "label": 2},
                {"text": "No entiendo", "label": 0}
            ]
        redis_client.rpush("training_queue", json.dumps({
            "tokenizers": {tokenizer_name: tokenizer.get_vocab()},
            "data": user_data
        }))
        return {"message": "Training data received. Model will be updated asynchronously."}
    elif data.get("message"):
        user_id = data.get("user_id")
        text = data['message']
        language = data.get("language", default_language)
        if user_id not in conversation_history:
            conversation_history[user_id] = []
        conversation_history[user_id].append(text)
        contextualized_text = " ".join(conversation_history[user_id][-3:])
        tokenized_input = tokenizer(contextualized_text, return_tensors="pt")
        with torch.no_grad():
            logits = unified_model(**tokenized_input).logits
            predicted_class = torch.argmax(logits, dim=-1).item()
        response = chatbot_service.get_response(user_id, contextualized_text, language)
        redis_client.rpush("training_queue", json.dumps({
            "tokenizers": {tokenizer_name: tokenizer.get_vocab()},
            "data": [{"text": contextualized_text, "label": predicted_class}]
        }))
        return {"answer": response}
    else:
        raise HTTPException(status_code=400, detail="Request must contain 'train' or 'message'.")

@app.get("/")
async def get_home():
    user_id = str(uuid.uuid4())
    html_code = f"""
    <!DOCTYPE html>
    <html>
    <head>
        <meta charset="UTF-8">
        <title>Chatbot</title>
        <style>
            body {{
                font-family: 'Arial', sans-serif;
                background-color: #f4f4f9;
                margin: 0;
                padding: 0;
                display: flex;
                align-items: center;
                justify-content: center;
                min-height: 100vh;
            }}
            .container {{
                background-color: #fff;
                border-radius: 10px;
                box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);
                overflow: hidden;
                width: 400px;
                max-width: 90%;
            }}
            h1 {{
                color: #333;
                text-align: center;
                padding: 20px;
                margin: 0;
                background-color: #f8f9fa;
                border-bottom: 1px solid #eee;
            }}
            #chatbox {{
                height: 300px;
                overflow-y: auto;
                padding: 10px;
                border-bottom: 1px solid #eee;
            }}
            .message {{
                margin-bottom: 10px;
                padding: 10px;
                border-radius: 5px;
            }}
            .message.user {{
                background-color: #e1f5fe;
                text-align: right;
            }}
            .message.bot {{
                background-color: #f1f1f1;
                text-align: left;
            }}
            #input {{
                display: flex;
                padding: 10px;
            }}
            #input textarea {{
                flex: 1;
                padding: 10px;
                border: 1px solid #ddd;
                border-radius: 4px;
                margin-right: 10px;
            }}
            #input button {{
                padding: 10px 20px;
                border: none;
                border-radius: 4px;
                background-color: #007bff;
                color: #fff;
                cursor: pointer;
            }}
            #input button:hover {{
                background-color: #0056b3;
            }}
        </style>
    </head>
    <body>
        <div class="container">
            <h1>Chatbot</h1>
            <div id="chatbox"></div>
            <div id="input">
                <textarea id="message" rows="3" placeholder="Escribe tu mensaje aquí..."></textarea>
                <button id="send">Enviar</button>
            </div>
        </div>
        <script>
            const chatbox = document.getElementById('chatbox');
            const messageInput = document.getElementById('message');
            const sendButton = document.getElementById('send');

            function appendMessage(text, sender) {{
                const messageDiv = document.createElement('div');
                messageDiv.classList.add('message', sender);
                messageDiv.textContent = text;
                chatbox.appendChild(messageDiv);
                chatbox.scrollTop = chatbox.scrollHeight;
            }}

            async function sendMessage() {{
                const message = messageInput.value;
                if (!message.trim()) return;

                appendMessage(message, 'user');
                messageInput.value = '';

                const response = await fetch('/process', {{
                    method: 'POST',
                    headers: {{
                        'Content-Type': 'application/json'
                    }},
                    body: JSON.stringify({{
                        message: message,
                        user_id: '{user_id}'
                    }})
                }});
                const data = await response.json();
                appendMessage(data.answer, 'bot');
            }}

            sendButton.addEventListener('click', sendMessage);
            messageInput.addEventListener('keypress', (e) => {{
                if (e.key === 'Enter' && !e.shiftKey) {{
                    e.preventDefault();
                    sendMessage();
                }}
            }});
        </script>
    </body>
    </html>
    """
    return HTMLResponse(content=html_code)

def train_unified_model():
    global tokenizer, unified_model
    redis_client = redis.StrictRedis(host=REDIS_HOST, port=REDIS_PORT, password=REDIS_PASSWORD)
    while True:
        training_data = redis_client.lpop("training_queue")
        if training_data:
            item_data = json.loads(training_data)
            tokenizer_data = item_data["tokenizers"]
            tokenizer_name = list(tokenizer_data.keys())[0]
            if redis_client.exists(f"tokenizer:{tokenizer_name}"):
                tokenizer.add_tokens(list(tokenizer_data[tokenizer_name].keys()))
            data = item_data["data"]
            dataset = SyntheticDataset(tokenizer, data)

            model_name = "unified_model"
            model_path = f"models/{model_name}"
            
            training_args = TrainingArguments(
                output_dir="./results",
                per_device_train_batch_size=8,
                num_train_epochs=3,
            )
            trainer = Trainer(model=unified_model, args=training_args, train_dataset=dataset)
            trainer.train()
            unified_model.save_pretrained(model_path)

async def auto_learn():
    global tokenizer, unified_model
    redis_client = redis.StrictRedis(host=REDIS_HOST, port=REDIS_PORT, password=REDIS_PASSWORD)
    while True:
        training_data = redis_client.lpop("training_queue")
        if training_data:
            item_data = json.loads(training_data)
            tokenizer_data = item_data["tokenizers"]
            tokenizer_name = list(tokenizer_data.keys())[0]
            if redis_client.exists(f"tokenizer:{tokenizer_name}"):
                tokenizer.add_tokens(list(tokenizer_data[tokenizer_name].keys()))
            data = item_data["data"]
            dataset = SyntheticDataset(tokenizer, data)

            model_name = "unified_model"
            model_path = f"models/{model_name}"

            training_args = TrainingArguments(
                output_dir="./results",
                per_device_train_batch_size=8,
                num_train_epochs=3,
            )
            trainer = Trainer(model=unified_model, args=training_args, train_dataset=dataset)
            trainer.train()
            unified_model.save_pretrained(model_path)

async def auto_learn_music():
    global musicgen_tokenizer, musicgen_model
    redis_client = redis.StrictRedis(host=REDIS_HOST, port=REDIS_PORT, password=REDIS_PASSWORD)
    while True:
        music_training_data = redis_client.lpop("music_training_queue")
        if music_training_data:
            music_training_data = json.loads(music_training_data.decode("utf-8"))
            inputs = musicgen_tokenizer(music_training_data, return_tensors="pt", padding=True)
            musicgen_model.train()
            optimizer = torch.optim.Adam(musicgen_model.parameters(), lr=5e-5)
            loss_fn = torch.nn.CrossEntropyLoss()

            for epoch in range(1):
                outputs = musicgen_model(**inputs)
                loss = loss_fn(outputs.logits, inputs['labels'])
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()

async def auto_learn_images():
    global image_pipeline
    redis_client = redis.StrictRedis(host=REDIS_HOST, port=REDIS_PORT, password=REDIS_PASSWORD)
    while True:
        image_training_data = redis_client.lpop("image_training_queue")
        if image_training_data:
            image_training_data = json.loads(image_training_data.decode("utf-8"))
            for image_prompt in image_training_data:
                image = image_pipeline(
                    image_prompt,
                    guidance_scale=0.0,
                    num_inference_steps=4,
                    max_sequence_length=256,
                    generator=torch.Generator("cpu").manual_seed(0)
                ).images[0]
                image_tensor = torch.tensor(np.array(image)).unsqueeze(0)
                image_pipeline.model.train()
                optimizer = torch.optim.Adam(image_pipeline.model.parameters(), lr=1e-5)
                loss_fn = torch.nn.MSELoss()
                target_tensor = torch.zeros_like(image_tensor)
                for epoch in range(1):
                    outputs = image_pipeline.model(image_tensor)
                    loss = loss_fn(outputs, target_tensor)
                    optimizer.zero_grad()
                    loss.backward()
                    optimizer.step()


if __name__ == "__main__":
    training_process = multiprocessing.Process(target=train_unified_model)
    training_process.start()
    music_training_process = multiprocessing.Process(target=auto_learn_music)
    music_training_process.start()
    image_training_process = multiprocessing.Process(target=auto_learn_images)
    image_training_process.start()
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)