Create App.py
Browse files
App.py
ADDED
@@ -0,0 +1,428 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dotenv import load_dotenv
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
import requests
|
5 |
+
import redis
|
6 |
+
from transformers import (
|
7 |
+
AutoTokenizer,
|
8 |
+
AutoModel,
|
9 |
+
TrainingArguments,
|
10 |
+
)
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
from torch.utils.data import DataLoader, Dataset
|
14 |
+
from torch.optim import AdamW
|
15 |
+
from fastapi import FastAPI, HTTPException, Request
|
16 |
+
from pydantic import BaseModel
|
17 |
+
from typing import List, Dict
|
18 |
+
from fastapi.responses import HTMLResponse
|
19 |
+
import multiprocessing
|
20 |
+
import time
|
21 |
+
|
22 |
+
load_dotenv()
|
23 |
+
|
24 |
+
REDIS_HOST = os.getenv('REDIS_HOST')
|
25 |
+
REDIS_PORT = os.getenv('REDIS_PORT')
|
26 |
+
REDIS_PASSWORD = os.getenv('REDIS_PASSWORD')
|
27 |
+
|
28 |
+
app = FastAPI()
|
29 |
+
|
30 |
+
class UnifiedModel(nn.Module):
|
31 |
+
def __init__(self, models):
|
32 |
+
super(UnifiedModel, self).__init__()
|
33 |
+
self.models = nn.ModuleList(models)
|
34 |
+
self.classifier = nn.Linear(sum([model.config.hidden_size for model in models]), 2)
|
35 |
+
|
36 |
+
def forward(self, input_ids, attention_mask):
|
37 |
+
hidden_states = []
|
38 |
+
for model, input_id, attn_mask in zip(self.models, input_ids, attention_mask):
|
39 |
+
outputs = model(
|
40 |
+
input_ids=input_id,
|
41 |
+
attention_mask=attn_mask
|
42 |
+
)
|
43 |
+
hidden_states.append(outputs.last_hidden_state[:, 0, :])
|
44 |
+
concatenated_hidden_states = torch.cat(hidden_states, dim=-1)
|
45 |
+
logits = self.classifier(concatenated_hidden_states)
|
46 |
+
return logits
|
47 |
+
|
48 |
+
class SyntheticDataset(Dataset):
|
49 |
+
def __init__(self, tokenizers, data):
|
50 |
+
self.tokenizers = tokenizers
|
51 |
+
self.data = data
|
52 |
+
|
53 |
+
def __len__(self):
|
54 |
+
return len(self.data)
|
55 |
+
|
56 |
+
def __getitem__(self, idx):
|
57 |
+
item = self.data[idx]
|
58 |
+
text = item['text']
|
59 |
+
label = item['label']
|
60 |
+
tokenized = {}
|
61 |
+
for name, tokenizer in self.tokenizers.items():
|
62 |
+
tokens = tokenizer(text, padding="max_length", truncation=True, max_length=128)
|
63 |
+
tokenized[f"input_ids_{name}"] = torch.tensor(tokens["input_ids"])
|
64 |
+
tokenized[f"attention_mask_{name}"] = torch.tensor(tokens["attention_mask"])
|
65 |
+
tokenized["label"] = torch.tensor(label)
|
66 |
+
return tokenized
|
67 |
+
|
68 |
+
@app.post("/process")
|
69 |
+
async def process(request: Request):
|
70 |
+
data = await request.json()
|
71 |
+
redis_client = redis.StrictRedis(host=REDIS_HOST, port=REDIS_PORT, password=REDIS_PASSWORD, decode_responses=True)
|
72 |
+
|
73 |
+
tokenizers = {}
|
74 |
+
models = {}
|
75 |
+
|
76 |
+
model_name = "unified_model"
|
77 |
+
tokenizer_name = "unified_tokenizer"
|
78 |
+
|
79 |
+
model_data_bytes = redis_client.get(f"model:{model_name}")
|
80 |
+
tokenizer_data_bytes = redis_client.get(f"tokenizer:{tokenizer_name}")
|
81 |
+
|
82 |
+
if model_data_bytes:
|
83 |
+
model_data = json.loads(model_data_bytes)
|
84 |
+
model = AutoModel.from_pretrained("gpt2")
|
85 |
+
model.load_state_dict(torch.load(model_data))
|
86 |
+
else:
|
87 |
+
model = AutoModel.from_pretrained("gpt2")
|
88 |
+
models[model_name] = model
|
89 |
+
|
90 |
+
if tokenizer_data_bytes:
|
91 |
+
tokenizer_data = json.loads(tokenizer_data_bytes)
|
92 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
93 |
+
tokenizer.add_tokens(tokenizer_data)
|
94 |
+
else:
|
95 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
96 |
+
tokenizers[tokenizer_name] = tokenizer
|
97 |
+
|
98 |
+
unified_model = UnifiedModel(list(models.values()))
|
99 |
+
unified_model.to(torch.device("cpu"))
|
100 |
+
|
101 |
+
if data.get("train"):
|
102 |
+
user_data = data.get("user_data", [])
|
103 |
+
if not user_data:
|
104 |
+
user_data = [{"text": "Sample text for automatic training.", "label": 0}]
|
105 |
+
|
106 |
+
train_dataset = SyntheticDataset(tokenizers, user_data)
|
107 |
+
train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True)
|
108 |
+
|
109 |
+
training_args = TrainingArguments(
|
110 |
+
output_dir="memory",
|
111 |
+
evaluation_strategy="epoch",
|
112 |
+
learning_rate=5e-5,
|
113 |
+
per_device_train_batch_size=8,
|
114 |
+
per_device_eval_batch_size=8,
|
115 |
+
num_train_epochs=10,
|
116 |
+
weight_decay=0.01,
|
117 |
+
logging_steps=10,
|
118 |
+
optim="adamw_hf"
|
119 |
+
)
|
120 |
+
|
121 |
+
optimizer = AdamW(unified_model.parameters(), lr=training_args.learning_rate)
|
122 |
+
unified_model.train()
|
123 |
+
|
124 |
+
for epoch in range(training_args.num_train_epochs):
|
125 |
+
for batch in train_loader:
|
126 |
+
input_ids = [batch[f"input_ids_{name}"].to("cpu") for name in tokenizers.keys()]
|
127 |
+
attention_mask = [batch[f"attention_mask_{name}"].to("cpu") for name in tokenizers.keys()]
|
128 |
+
labels = batch["label"].to("cpu")
|
129 |
+
outputs = unified_model(input_ids=input_ids, attention_mask=attention_mask)
|
130 |
+
loss = nn.CrossEntropyLoss()(outputs, labels)
|
131 |
+
loss.backward()
|
132 |
+
optimizer.step()
|
133 |
+
optimizer.zero_grad()
|
134 |
+
|
135 |
+
print(f"Epoch {epoch}, Loss {loss.item()}")
|
136 |
+
|
137 |
+
print("Training complete.")
|
138 |
+
|
139 |
+
push_to_redis(models, tokenizers, redis_client, model_name, tokenizer_name)
|
140 |
+
return {"message": "Model trained and updated in Redis."}
|
141 |
+
|
142 |
+
elif data.get("predict"):
|
143 |
+
text = data['text']
|
144 |
+
tokenized_inputs = [tokenizers[name](text, return_tensors="pt") for name in tokenizers.keys()]
|
145 |
+
input_ids = [tokens['input_ids'] for tokens in tokenized_inputs]
|
146 |
+
attention_mask = [tokens['attention_mask'] for tokens in tokenized_inputs]
|
147 |
+
|
148 |
+
with torch.no_grad():
|
149 |
+
logits = unified_model(input_ids=input_ids, attention_mask=attention_mask)
|
150 |
+
predicted_class = torch.argmax(logits, dim=-1).item()
|
151 |
+
|
152 |
+
return {"prediction": predicted_class}
|
153 |
+
|
154 |
+
else:
|
155 |
+
raise HTTPException(status_code=400, detail="Request must contain 'train' or 'predict'.")
|
156 |
+
|
157 |
+
@app.post("/external_answer")
|
158 |
+
async def external_answer(request: Request):
|
159 |
+
data = await request.json()
|
160 |
+
redis_client = redis.StrictRedis(host=REDIS_HOST, port=REDIS_PORT, password=REDIS_PASSWORD, decode_responses=True)
|
161 |
+
|
162 |
+
question = data.get('question')
|
163 |
+
if not question:
|
164 |
+
raise HTTPException(status_code=400, detail="Question is required.")
|
165 |
+
|
166 |
+
model_name = "unified_model"
|
167 |
+
tokenizer_name = "unified_tokenizer"
|
168 |
+
|
169 |
+
model_data_bytes = redis_client.get(f"model:{model_name}")
|
170 |
+
tokenizer_data_bytes = redis_client.get(f"tokenizer:{tokenizer_name}")
|
171 |
+
|
172 |
+
if model_data_bytes:
|
173 |
+
model_data = json.loads(model_data_bytes)
|
174 |
+
model = AutoModel.from_pretrained("gpt2")
|
175 |
+
model.load_state_dict(torch.load(model_data))
|
176 |
+
else:
|
177 |
+
model = AutoModel.from_pretrained("gpt2")
|
178 |
+
|
179 |
+
if tokenizer_data_bytes:
|
180 |
+
tokenizer_data = json.loads(tokenizer_data_bytes)
|
181 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
182 |
+
tokenizer.add_tokens(tokenizer_data)
|
183 |
+
else:
|
184 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
185 |
+
|
186 |
+
unified_model = UnifiedModel([model])
|
187 |
+
unified_model.to(torch.device("cpu"))
|
188 |
+
|
189 |
+
tokenized_input = tokenizer(question, return_tensors="pt")
|
190 |
+
input_ids = tokenized_input['input_ids']
|
191 |
+
attention_mask = tokenized_input['attention_mask']
|
192 |
+
|
193 |
+
with torch.no_grad():
|
194 |
+
logits = unified_model(input_ids=input_ids, attention_mask=attention_mask)
|
195 |
+
predicted_class = torch.argmax(logits, dim=-1).item()
|
196 |
+
response = {"answer": f"Response to '{question}' is class {predicted_class}"}
|
197 |
+
|
198 |
+
extreme_training_data = [{"text": question, "label": predicted_class}]
|
199 |
+
train_dataset = SyntheticDataset({tokenizer_name: tokenizer}, extreme_training_data)
|
200 |
+
train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True)
|
201 |
+
|
202 |
+
training_args = TrainingArguments(
|
203 |
+
output_dir="memory",
|
204 |
+
evaluation_strategy="epoch",
|
205 |
+
learning_rate=5e-5,
|
206 |
+
per_device_train_batch_size=8,
|
207 |
+
per_device_eval_batch_size=8,
|
208 |
+
num_train_epochs=10,
|
209 |
+
weight_decay=0.01,
|
210 |
+
logging_steps=10,
|
211 |
+
optim="adamw_hf"
|
212 |
+
)
|
213 |
+
|
214 |
+
optimizer = AdamW(unified_model.parameters(), lr=training_args.learning_rate)
|
215 |
+
unified_model.train()
|
216 |
+
|
217 |
+
for epoch in range(training_args.num_train_epochs):
|
218 |
+
for batch in train_loader:
|
219 |
+
input_ids = [batch[f"input_ids_{name}"].to("cpu") for name in [tokenizer_name]]
|
220 |
+
attention_mask = [batch[f"attention_mask_{name}"].to("cpu") for name in [tokenizer_name]]
|
221 |
+
labels = batch["label"].to("cpu")
|
222 |
+
outputs = unified_model(input_ids=input_ids, attention_mask=attention_mask)
|
223 |
+
loss = nn.CrossEntropyLoss()(outputs, labels)
|
224 |
+
loss.backward()
|
225 |
+
optimizer.step()
|
226 |
+
optimizer.zero_grad()
|
227 |
+
|
228 |
+
print(f"Epoch {epoch}, Loss {loss.item()}")
|
229 |
+
|
230 |
+
print("Extreme training complete.")
|
231 |
+
push_to_redis({model_name: model}, {tokenizer_name: tokenizer}, redis_client, model_name, tokenizer_name)
|
232 |
+
|
233 |
+
return response
|
234 |
+
|
235 |
+
@app.get("/")
|
236 |
+
async def get_home():
|
237 |
+
html_code = """
|
238 |
+
<!DOCTYPE html>
|
239 |
+
<html>
|
240 |
+
<head>
|
241 |
+
<meta charset="UTF-8">
|
242 |
+
<title>Chatbot</title>
|
243 |
+
<style>
|
244 |
+
body {
|
245 |
+
font-family: Arial, sans-serif;
|
246 |
+
background-color: #f4f4f9;
|
247 |
+
margin: 0;
|
248 |
+
padding: 0;
|
249 |
+
}
|
250 |
+
.container {
|
251 |
+
max-width: 1200px;
|
252 |
+
margin: 0 auto;
|
253 |
+
padding: 20px;
|
254 |
+
}
|
255 |
+
h1 {
|
256 |
+
color: #333;
|
257 |
+
text-align: center;
|
258 |
+
}
|
259 |
+
.grid-container {
|
260 |
+
display: grid;
|
261 |
+
grid-template-columns: repeat(auto-fill, minmax(300px, 1fr));
|
262 |
+
gap: 10px;
|
263 |
+
margin-top: 20px;
|
264 |
+
}
|
265 |
+
.grid-item {
|
266 |
+
background: #fff;
|
267 |
+
padding: 20px;
|
268 |
+
border-radius: 8px;
|
269 |
+
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);
|
270 |
+
transition: transform 0.3s;
|
271 |
+
}
|
272 |
+
.grid-item:hover {
|
273 |
+
transform: scale(1.05);
|
274 |
+
}
|
275 |
+
.question {
|
276 |
+
font-weight: bold;
|
277 |
+
color: #007bff;
|
278 |
+
}
|
279 |
+
.answer {
|
280 |
+
margin-top: 10px;
|
281 |
+
color: #333;
|
282 |
+
}
|
283 |
+
input[type="text"] {
|
284 |
+
width: calc(100% - 22px);
|
285 |
+
padding: 10px;
|
286 |
+
margin: 0;
|
287 |
+
border: 1px solid #ddd;
|
288 |
+
border-radius: 4px;
|
289 |
+
}
|
290 |
+
button {
|
291 |
+
padding: 10px 20px;
|
292 |
+
background-color: #007bff;
|
293 |
+
color: #fff;
|
294 |
+
border: none;
|
295 |
+
border-radius: 4px;
|
296 |
+
cursor: pointer;
|
297 |
+
margin-top: 10px;
|
298 |
+
}
|
299 |
+
button:hover {
|
300 |
+
background-color: #0056b3;
|
301 |
+
}
|
302 |
+
</style>
|
303 |
+
<script>
|
304 |
+
async function sendMessage() {
|
305 |
+
const question = document.getElementById('question').value;
|
306 |
+
const responseElement = document.getElementById('response');
|
307 |
+
|
308 |
+
const response = await fetch('/external_answer', {
|
309 |
+
method: 'POST',
|
310 |
+
headers: {
|
311 |
+
'Content-Type': 'application/json',
|
312 |
+
},
|
313 |
+
body: JSON.stringify({ question: question })
|
314 |
+
});
|
315 |
+
|
316 |
+
const data = await response.json();
|
317 |
+
responseElement.innerText = "Response: " + data.answer;
|
318 |
+
|
319 |
+
const gridContainer = document.getElementById('grid-container');
|
320 |
+
const newItem = document.createElement('div');
|
321 |
+
newItem.classList.add('grid-item');
|
322 |
+
newItem.innerHTML = `<div class="question">${question}</div><div class="answer">${data.answer}</div>`;
|
323 |
+
gridContainer.prepend(newItem);
|
324 |
+
}
|
325 |
+
</script>
|
326 |
+
</head>
|
327 |
+
<body>
|
328 |
+
<div class="container">
|
329 |
+
<h1>Chatbot</h1>
|
330 |
+
<input type="text" id="question" placeholder="Ask me something...">
|
331 |
+
<button onclick="sendMessage()">Send</button>
|
332 |
+
<div id="response"></div>
|
333 |
+
<div class="grid-container" id="grid-container"></div>
|
334 |
+
</div>
|
335 |
+
</body>
|
336 |
+
</html>
|
337 |
+
"""
|
338 |
+
return HTMLResponse(content=html_code)
|
339 |
+
|
340 |
+
def push_to_redis(models, tokenizers, redis_client, model_name, tokenizer_name):
|
341 |
+
model_data = json.dumps(next(iter(models.values())).state_dict())
|
342 |
+
redis_client.set(f"model:{model_name}", model_data)
|
343 |
+
|
344 |
+
tokenizer_data = json.dumps(next(iter(tokenizers.values())).get_vocab())
|
345 |
+
redis_client.set(f"tokenizer:{tokenizer_name}", tokenizer_data)
|
346 |
+
|
347 |
+
def continuous_training():
|
348 |
+
redis_client = redis.StrictRedis(host=REDIS_HOST, port=REDIS_PORT, password=REDIS_PASSWORD, decode_responses=True)
|
349 |
+
|
350 |
+
model_name = "unified_model"
|
351 |
+
tokenizer_name = "unified_tokenizer"
|
352 |
+
|
353 |
+
while True:
|
354 |
+
try:
|
355 |
+
model_data_bytes = redis_client.get(f"model:{model_name}")
|
356 |
+
tokenizer_data_bytes = redis_client.get(f"tokenizer:{tokenizer_name}")
|
357 |
+
|
358 |
+
if model_data_bytes and tokenizer_data_bytes:
|
359 |
+
model_data = json.loads(model_data_bytes)
|
360 |
+
model = AutoModel.from_pretrained("gpt2")
|
361 |
+
model.load_state_dict(torch.load(model_data))
|
362 |
+
|
363 |
+
tokenizer_data = json.loads(tokenizer_data_bytes)
|
364 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
365 |
+
tokenizer.add_tokens(tokenizer_data)
|
366 |
+
|
367 |
+
unified_model = UnifiedModel([model])
|
368 |
+
unified_model.to(torch.device("cpu"))
|
369 |
+
|
370 |
+
train_data = [{"text": "Sample training text.", "label": 0}]
|
371 |
+
train_dataset = SyntheticDataset({tokenizer_name: tokenizer}, train_data)
|
372 |
+
train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True)
|
373 |
+
|
374 |
+
training_args = TrainingArguments(
|
375 |
+
output_dir="memory",
|
376 |
+
evaluation_strategy="epoch",
|
377 |
+
learning_rate=5e-5,
|
378 |
+
per_device_train_batch_size=8,
|
379 |
+
per_device_eval_batch_size=8,
|
380 |
+
num_train_epochs=10,
|
381 |
+
weight_decay=0.01,
|
382 |
+
logging_steps=10,
|
383 |
+
optim="adamw_hf"
|
384 |
+
)
|
385 |
+
|
386 |
+
optimizer = AdamW(unified_model.parameters(), lr=training_args.learning_rate)
|
387 |
+
unified_model.train()
|
388 |
+
|
389 |
+
for epoch in range(training_args.num_train_epochs):
|
390 |
+
for batch in train_loader:
|
391 |
+
input_ids = [batch[f"input_ids_{name}"].to("cpu") for name in [tokenizer_name]]
|
392 |
+
attention_mask = [batch[f"attention_mask_{name}"].to("cpu") for name in [tokenizer_name]]
|
393 |
+
labels = batch["label"].to("cpu")
|
394 |
+
outputs = unified_model(input_ids=input_ids, attention_mask=attention_mask)
|
395 |
+
loss = nn.CrossEntropyLoss()(outputs, labels)
|
396 |
+
loss.backward()
|
397 |
+
optimizer.step()
|
398 |
+
optimizer.zero_grad()
|
399 |
+
|
400 |
+
print(f"Epoch {epoch}, Loss {loss.item()}")
|
401 |
+
|
402 |
+
print("Training complete.")
|
403 |
+
push_to_redis({model_name: model}, {tokenizer_name: tokenizer}, redis_client, model_name, tokenizer_name)
|
404 |
+
else:
|
405 |
+
print("No model or tokenizer found in Redis. Skipping training.")
|
406 |
+
|
407 |
+
time.sleep(600)
|
408 |
+
|
409 |
+
except Exception as e:
|
410 |
+
print(f"An error occurred: {e}")
|
411 |
+
time.sleep(60)
|
412 |
+
|
413 |
+
def start_server():
|
414 |
+
import uvicorn
|
415 |
+
cpu_cores = os.cpu_count() or 1
|
416 |
+
num_workers = max(1, cpu_cores - 1)
|
417 |
+
|
418 |
+
uvicorn.run(app, host="0.0.0.0", port=8000, workers=num_workers, timeout_keep_alive=0)
|
419 |
+
|
420 |
+
if __name__ == "__main__":
|
421 |
+
api_process = multiprocessing.Process(target=start_server)
|
422 |
+
training_process = multiprocessing.Process(target=continuous_training)
|
423 |
+
|
424 |
+
api_process.start()
|
425 |
+
training_process.start()
|
426 |
+
|
427 |
+
api_process.join()
|
428 |
+
training_process.join()
|