File size: 13,768 Bytes
64e4328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
from fastapi import FastAPI, HTTPException, Request
import uvicorn
import requests
import os
import io
import asyncio
from typing import List, Dict, Any
from tqdm import tqdm
from llama_cpp import Llama
import aiofiles
import time
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
app = FastAPI()
model_configs = [
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"},
{"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf", "name": "Gemma 2-9B IT"},
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"},
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"},
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"},
{"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf", "name": "Qwen2 7B Instruct"},
{"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"},
{"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"},
{"repo_id": "Ffftdtd5dtft/starcoder2-15b-Q2_K-GGUF", "filename": "starcoder2-15b-q2_k.gguf", "name": "Starcoder2 15B"},
{"repo_id": "Ffftdtd5dtft/gemma-2-2b-it-Q2_K-GGUF", "filename": "gemma-2-2b-it-q2_k.gguf", "name": "Gemma 2-2B IT"},
{"repo_id": "Ffftdtd5dtft/sarvam-2b-v0.5-Q2_K-GGUF", "filename": "sarvam-2b-v0.5-q2_k.gguf", "name": "Sarvam 2B v0.5"},
{"repo_id": "Ffftdtd5dtft/WizardLM-13B-Uncensored-Q2_K-GGUF", "filename": "wizardlm-13b-uncensored-q2_k.gguf", "name": "WizardLM 13B Uncensored"},
{"repo_id": "Ffftdtd5dtft/WizardLM-7B-Uncensored-Q2_K-GGUF", "filename": "wizardlm-7b-uncensored-q2_k.gguf", "name": "WizardLM 7B Uncensored"},
{"repo_id": "Ffftdtd5dtft/Qwen2-Math-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-math-7b-instruct-q2_k.gguf", "name": "Qwen2 Math 7B Instruct"}
]
models_dir = "modelos"
models = {}
class ModelManager:
def __init__(self):
self.model_parts = {}
self.load_lock = asyncio.Lock()
self.index_lock = asyncio.Lock()
self.part_size = 1024 * 1024
async def download_model(self, model_config):
model_path = os.path.join(models_dir, model_config['filename'])
if not os.path.exists(model_path):
url = f"https://huggingface.co/{model_config['repo_id']}/resolve/main/{model_config['filename']}"
print(f"Descargando modelo desde {url}")
try:
start_time = time.time()
response = requests.get(url, stream=True)
response.raise_for_status()
total_size = int(response.headers.get('content-length', 0))
with open(model_path, 'wb') as f:
with tqdm(total=total_size, unit='B', unit_scale=True, desc=f"Descargando {model_config['filename']}") as pbar:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
pbar.update(len(chunk))
end_time = time.time()
download_duration = end_time - start_time
print(f"Descarga completa para {model_config['name']} en {download_duration:.2f} segundos")
except requests.RequestException as e:
raise HTTPException(status_code=500, detail=f"Error al descargar el modelo: {e}")
else:
print(f"Modelo {model_config['filename']} ya descargado.")
return model_path
async def download_all_models(self):
async with self.load_lock:
download_tasks = [self.download_model(config) for config in model_configs]
await asyncio.gather(*download_tasks)
async def load_all_models(self):
async with self.load_lock:
load_tasks = [self.load_model(config) for config in model_configs]
await asyncio.gather(*load_tasks)
async def load_model(self, model_config):
model_name = model_config['name']
if model_name not in models:
try:
model_path = os.path.join(models_dir, model_config['filename'])
start_time = time.time()
print(f"Cargando modelo desde {model_path}")
llama = Llama(model_path=model_path)
end_time = time.time()
load_duration = end_time - start_time
if load_duration > 0:
print(f"Modelo {model_name} tardó {load_duration:.2f} segundos en cargar")
else:
print(f"Modelo {model_name} cargado correctamente en {load_duration:.2f} segundos")
tokenizer = llama.tokenizer
models[model_name] = {
'model': llama,
'tokenizer': tokenizer,
}
except Exception as e:
print(f"Error al cargar el modelo: {e}")
async def generate_response(self, user_input, model_name=None, top_k=50, top_p=0.95, temperature=0.8):
results = []
if model_name:
model_data = models.get(model_name)
if not model_data:
return {"model_name": model_name, "error": "Modelo no encontrado"}
try:
tokenizer = model_data['tokenizer']
input_ids = tokenizer(user_input).input_ids
outputs = model_data['model'].generate(
[input_ids],
top_k=top_k,
top_p=top_p,
temperature=temperature
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
parts = []
while len(generated_text) > 1000:
part = generated_text[:1000]
parts.append(part)
generated_text = generated_text[1000:]
parts.append(generated_text)
results.append({
'model_name': model_name,
'generated_text': generated_text,
'generated_text_parts': parts
})
except Exception as e:
return {'model_name': model_name, 'error': str(e)}
else:
for model_name, model_data in models.items():
try:
tokenizer = model_data['tokenizer']
input_ids = tokenizer(user_input).input_ids
outputs = model_data['model'].generate(
[input_ids],
top_k=top_k,
top_p=top_p,
temperature=temperature
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
parts = []
while len(generated_text) > 1000:
part = generated_text[:1000]
parts.append(part)
generated_text = generated_text[1000:]
parts.append(generated_text)
results.append({
'model_name': model_name,
'generated_text': generated_text,
'generated_text_parts': parts
})
except Exception as e:
results.append({'model_name': model_name, 'error': str(e)})
if len(results) > 1:
best_response = self.choose_best_response(user_input, results)
elif len(results) == 1:
best_response = results[0]
else:
return {"model_name": "Error", "error": "No se pudo generar una respuesta con ningún modelo."}
return best_response
def choose_best_response(self, user_input, responses):
valid_responses = [r for r in responses if 'error' not in r]
tfidf = TfidfVectorizer()
response_texts = [r['generated_text'] for r in valid_responses]
tfidf_matrix = tfidf.fit_transform([user_input] + response_texts)
similarities = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:])
best_index = similarities.argmax()
best_response = valid_responses[best_index]
return best_response
@app.post("/generate/")
async def generate(request: Request):
data = await request.json()
user_input = data.get('input', '')
model_name = data.get('model')
top_k = data.get('top_k', 50)
top_p = data.get('top_p', 0.95)
temperature = data.get('temperature', 0.8)
if not user_input:
raise HTTPException(status_code=400, detail="Se requiere una entrada de usuario.")
try:
response = await model_manager.generate_response(user_input, model_name, top_k, top_p, temperature)
return {"response": response}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/models")
async def get_available_models():
return {"models": [config['name'] for config in model_configs]}
async def load_models_on_startup():
global model_manager
model_manager = ModelManager()
await model_manager.download_all_models()
await model_manager.load_all_models()
@app.on_event("startup")
async def startup_event():
await load_models_on_startup()
print("Modelos cargados. API lista.")
if __name__ == "__main__":
if not os.path.exists(models_dir):
os.makedirs(models_dir)
uvicorn.run(app, host="0.0.0.0", port=7860)
html_code = """
<!DOCTYPE html>
<html>
<head>
<title>Chatbot</title>
<style>
body {
display: flex;
justify-content: center;
align-items: center;
height: 100vh;
margin: 0;
font-family: sans-serif;
}
.container {
border: 1px solid #ccc;
border-radius: 5px;
width: 400px;
height: 500px;
overflow: hidden;
}
.chat-log {
padding: 10px;
height: 400px;
overflow-y: scroll;
}
.chat-message {
margin-bottom: 10px;
padding: 8px;
border-radius: 5px;
}
.user-message {
background-color: #eee;
}
.bot-message {
background-color: #ccf;
}
.input-area {
display: flex;
padding: 10px;
}
#user-input {
flex: 1;
padding: 8px;
border: 1px solid #ccc;
border-radius: 5px;
}
#send-button {
padding: 8px 15px;
background-color: #4CAF50;
color: white;
border: none;
border-radius: 5px;
cursor: pointer;
margin-left: 10px;
}
#model-select {
width: 100%;
padding: 8px;
border: 1px solid #ccc;
border-radius: 5px;
margin-bottom: 10px;
}
</style>
</head>
<body>
<div class="container">
<div class="chat-log" id="chat-log">
</div>
<div class="input-area">
<input type="text" id="user-input" placeholder="Escribe tu mensaje...">
<button id="send-button">Enviar</button>
</div>
<select id="model-select">
<option value="">Todos los modelos</option>
</select>
</div>
<script>
const chatLog = document.getElementById('chat-log');
const userInput = document.getElementById('user-input');
const sendButton = document.getElementById('send-button');
const modelSelect = document.getElementById('model-select');
let currentConversationId = null;
async function startNewConversation() {
}
startNewConversation();
async function getAvailableModels() {
const response = await fetch('/models');
const data = await response.json();
return data.models;
}
async function displayAvailableModels() {
const models = await getAvailableModels();
models.forEach(model => {
const option = document.createElement('option');
option.value = model;
option.text = model;
modelSelect.add(option);
});
}
displayAvailableModels();
sendButton.addEventListener('click', async () => {
const userMessage = userInput.value;
userInput.value = '';
const selectedModel = modelSelect.value;
appendMessage('user', userMessage);
const response = await fetch('/generate/', {
method: 'POST',
headers: {
'Content-Type': 'application/json'
},
body: JSON.stringify({ input: userMessage, model: selectedModel })
});
const data = await response.json();
if (data.response.error) {
appendMessage('bot', `Error del modelo ${data.response.model_name}: ${data.response.error}`);
} else {
data.response.generated_text_parts.forEach(part => {
appendMessage('bot', part);
});
}
});
function appendMessage(role, message) {
const messageElement = document.createElement('div');
messageElement.classList.add('chat-message', `${role}-message`);
messageElement.textContent = message;
chatLog.appendChild(messageElement);
chatLog.scrollTop = chatLog.scrollHeight;
}
</script>
</body>
</html>
""" |