File size: 13,768 Bytes
64e4328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
from fastapi import FastAPI, HTTPException, Request
import uvicorn
import requests
import os
import io
import asyncio
from typing import List, Dict, Any
from tqdm import tqdm
from llama_cpp import Llama
import aiofiles
import time
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

app = FastAPI()

model_configs = [
    {"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
    {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"},
    {"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf", "name": "Gemma 2-9B IT"},
    {"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"},
    {"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"},
    {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"},
    {"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf", "name": "Qwen2 7B Instruct"},
    {"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"},
    {"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"},
    {"repo_id": "Ffftdtd5dtft/starcoder2-15b-Q2_K-GGUF", "filename": "starcoder2-15b-q2_k.gguf", "name": "Starcoder2 15B"},
    {"repo_id": "Ffftdtd5dtft/gemma-2-2b-it-Q2_K-GGUF", "filename": "gemma-2-2b-it-q2_k.gguf", "name": "Gemma 2-2B IT"},
    {"repo_id": "Ffftdtd5dtft/sarvam-2b-v0.5-Q2_K-GGUF", "filename": "sarvam-2b-v0.5-q2_k.gguf", "name": "Sarvam 2B v0.5"},
    {"repo_id": "Ffftdtd5dtft/WizardLM-13B-Uncensored-Q2_K-GGUF", "filename": "wizardlm-13b-uncensored-q2_k.gguf", "name": "WizardLM 13B Uncensored"},
    {"repo_id": "Ffftdtd5dtft/WizardLM-7B-Uncensored-Q2_K-GGUF", "filename": "wizardlm-7b-uncensored-q2_k.gguf", "name": "WizardLM 7B Uncensored"},
    {"repo_id": "Ffftdtd5dtft/Qwen2-Math-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-math-7b-instruct-q2_k.gguf", "name": "Qwen2 Math 7B Instruct"}
]

models_dir = "modelos"
models = {}

class ModelManager:
    def __init__(self):
        self.model_parts = {}
        self.load_lock = asyncio.Lock()
        self.index_lock = asyncio.Lock()
        self.part_size = 1024 * 1024 

    async def download_model(self, model_config):
        model_path = os.path.join(models_dir, model_config['filename'])
        if not os.path.exists(model_path):
            url = f"https://huggingface.co/{model_config['repo_id']}/resolve/main/{model_config['filename']}"
            print(f"Descargando modelo desde {url}")
            try:
                start_time = time.time()
                response = requests.get(url, stream=True)
                response.raise_for_status()

                total_size = int(response.headers.get('content-length', 0))
                with open(model_path, 'wb') as f:
                    with tqdm(total=total_size, unit='B', unit_scale=True, desc=f"Descargando {model_config['filename']}") as pbar:
                        for chunk in response.iter_content(chunk_size=8192):
                            f.write(chunk)
                            pbar.update(len(chunk))
                end_time = time.time()
                download_duration = end_time - start_time
                print(f"Descarga completa para {model_config['name']} en {download_duration:.2f} segundos")
            except requests.RequestException as e:
                raise HTTPException(status_code=500, detail=f"Error al descargar el modelo: {e}")
        else:
            print(f"Modelo {model_config['filename']} ya descargado.")
        return model_path

    async def download_all_models(self):
        async with self.load_lock:
            download_tasks = [self.download_model(config) for config in model_configs]
            await asyncio.gather(*download_tasks)

    async def load_all_models(self):
        async with self.load_lock:
            load_tasks = [self.load_model(config) for config in model_configs]
            await asyncio.gather(*load_tasks)

    async def load_model(self, model_config):
        model_name = model_config['name']
        if model_name not in models:
            try:
                model_path = os.path.join(models_dir, model_config['filename'])
                start_time = time.time()
                print(f"Cargando modelo desde {model_path}")

                llama = Llama(model_path=model_path)

                end_time = time.time()
                load_duration = end_time - start_time
                if load_duration > 0:
                    print(f"Modelo {model_name} tardó {load_duration:.2f} segundos en cargar")
                else:
                    print(f"Modelo {model_name} cargado correctamente en {load_duration:.2f} segundos")

                tokenizer = llama.tokenizer
                models[model_name] = {
                    'model': llama,
                    'tokenizer': tokenizer,
                }
            except Exception as e:
                print(f"Error al cargar el modelo: {e}")

    async def generate_response(self, user_input, model_name=None, top_k=50, top_p=0.95, temperature=0.8):
        results = []
        if model_name:
            model_data = models.get(model_name)
            if not model_data:
                return {"model_name": model_name, "error": "Modelo no encontrado"}
            try:
                tokenizer = model_data['tokenizer']
                input_ids = tokenizer(user_input).input_ids
                outputs = model_data['model'].generate(
                    [input_ids],
                    top_k=top_k,
                    top_p=top_p,
                    temperature=temperature
                )
                generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
                parts = []
                while len(generated_text) > 1000:
                    part = generated_text[:1000]
                    parts.append(part)
                    generated_text = generated_text[1000:]
                parts.append(generated_text)
                results.append({
                    'model_name': model_name,
                    'generated_text': generated_text,
                    'generated_text_parts': parts
                })
            except Exception as e:
                return {'model_name': model_name, 'error': str(e)}
        else:
            for model_name, model_data in models.items():
                try:
                    tokenizer = model_data['tokenizer']
                    input_ids = tokenizer(user_input).input_ids
                    outputs = model_data['model'].generate(
                        [input_ids],
                        top_k=top_k,
                        top_p=top_p,
                        temperature=temperature
                    )
                    generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
                    parts = []
                    while len(generated_text) > 1000:
                        part = generated_text[:1000]
                        parts.append(part)
                        generated_text = generated_text[1000:]
                    parts.append(generated_text)
                    results.append({
                        'model_name': model_name,
                        'generated_text': generated_text,
                        'generated_text_parts': parts
                    })
                except Exception as e:
                    results.append({'model_name': model_name, 'error': str(e)})

        if len(results) > 1:
            best_response = self.choose_best_response(user_input, results)
        elif len(results) == 1:
            best_response = results[0]
        else: 
            return {"model_name": "Error", "error": "No se pudo generar una respuesta con ningún modelo."}

        return best_response

    def choose_best_response(self, user_input, responses):
        valid_responses = [r for r in responses if 'error' not in r]

        tfidf = TfidfVectorizer()
        response_texts = [r['generated_text'] for r in valid_responses]
        tfidf_matrix = tfidf.fit_transform([user_input] + response_texts)
        similarities = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:])

        best_index = similarities.argmax()
        best_response = valid_responses[best_index]

        return best_response

@app.post("/generate/")
async def generate(request: Request):
    data = await request.json()
    user_input = data.get('input', '')
    model_name = data.get('model')
    top_k = data.get('top_k', 50)
    top_p = data.get('top_p', 0.95)
    temperature = data.get('temperature', 0.8)
    if not user_input:
        raise HTTPException(status_code=400, detail="Se requiere una entrada de usuario.")

    try:
        response = await model_manager.generate_response(user_input, model_name, top_k, top_p, temperature)
        return {"response": response}
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/models")
async def get_available_models():
    return {"models": [config['name'] for config in model_configs]}

async def load_models_on_startup():
    global model_manager
    model_manager = ModelManager()
    await model_manager.download_all_models()
    await model_manager.load_all_models()

@app.on_event("startup")
async def startup_event():
    await load_models_on_startup()
    print("Modelos cargados. API lista.")

if __name__ == "__main__":
    if not os.path.exists(models_dir):
        os.makedirs(models_dir)

    uvicorn.run(app, host="0.0.0.0", port=7860)

html_code = """
<!DOCTYPE html>
<html>
<head>
<title>Chatbot</title>
<style>
body {
    display: flex;
    justify-content: center;
    align-items: center;
    height: 100vh;
    margin: 0;
    font-family: sans-serif;
}

.container {
    border: 1px solid #ccc;
    border-radius: 5px;
    width: 400px;
    height: 500px;
    overflow: hidden;
}

.chat-log {
    padding: 10px;
    height: 400px;
    overflow-y: scroll;
}

.chat-message {
    margin-bottom: 10px;
    padding: 8px;
    border-radius: 5px;
}

.user-message {
    background-color: #eee;
}

.bot-message {
    background-color: #ccf;
}

.input-area {
    display: flex;
    padding: 10px;
}

#user-input {
    flex: 1;
    padding: 8px;
    border: 1px solid #ccc;
    border-radius: 5px;
}

#send-button {
    padding: 8px 15px;
    background-color: #4CAF50;
    color: white;
    border: none;
    border-radius: 5px;
    cursor: pointer;
    margin-left: 10px;
}

#model-select {
    width: 100%;
    padding: 8px;
    border: 1px solid #ccc;
    border-radius: 5px;
    margin-bottom: 10px;
}
</style>
</head>
<body>
    <div class="container">
        <div class="chat-log" id="chat-log">
        </div>
        <div class="input-area">
            <input type="text" id="user-input" placeholder="Escribe tu mensaje...">
            <button id="send-button">Enviar</button>
        </div>
        <select id="model-select">
            <option value="">Todos los modelos</option>
            </select> 
    </div>

    <script>
        const chatLog = document.getElementById('chat-log');
        const userInput = document.getElementById('user-input');
        const sendButton = document.getElementById('send-button');
        const modelSelect = document.getElementById('model-select');
        let currentConversationId = null;

        async function startNewConversation() {
        }

        startNewConversation();

        async function getAvailableModels() {
            const response = await fetch('/models');
            const data = await response.json();
            return data.models;
        }

        async function displayAvailableModels() {
            const models = await getAvailableModels();
            models.forEach(model => {
                const option = document.createElement('option');
                option.value = model;
                option.text = model;
                modelSelect.add(option);
            });
        }

        displayAvailableModels();

        sendButton.addEventListener('click', async () => {
            const userMessage = userInput.value;
            userInput.value = '';
            const selectedModel = modelSelect.value;

            appendMessage('user', userMessage);

            const response = await fetch('/generate/', {
                method: 'POST',
                headers: {
                    'Content-Type': 'application/json'
                },
                body: JSON.stringify({ input: userMessage, model: selectedModel }) 
            });

            const data = await response.json();
            if (data.response.error) {
                appendMessage('bot', `Error del modelo ${data.response.model_name}: ${data.response.error}`);
            } else {
                data.response.generated_text_parts.forEach(part => {
                    appendMessage('bot', part);
                });
            }
        });

        function appendMessage(role, message) {
            const messageElement = document.createElement('div');
            messageElement.classList.add('chat-message', `${role}-message`);
            messageElement.textContent = message;
            chatLog.appendChild(messageElement);
            chatLog.scrollTop = chatLog.scrollHeight;
        }
    </script>
</body>
</html>
"""