Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,12 @@
|
|
1 |
-
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
-
from llama_cpp import Llama
|
4 |
-
from concurrent.futures import ThreadPoolExecutor, as_completed
|
5 |
-
from tqdm import tqdm
|
6 |
import uvicorn
|
7 |
-
from dotenv import load_dotenv
|
8 |
-
import io
|
9 |
import requests
|
|
|
10 |
import asyncio
|
11 |
-
import
|
12 |
-
|
13 |
-
# Cargar variables de entorno
|
14 |
-
load_dotenv()
|
15 |
|
16 |
-
# Inicializar aplicaci贸n FastAPI
|
17 |
app = FastAPI()
|
18 |
|
19 |
# Configuraci贸n de los modelos
|
@@ -31,149 +24,119 @@ model_configs = [
|
|
31 |
{"repo_id": "Ffftdtd5dtft/gemma-2-2b-it-Q2_K-GGUF", "filename": "gemma-2-2b-it-q2_k.gguf", "name": "Gemma 2-2B IT"},
|
32 |
{"repo_id": "Ffftdtd5dtft/sarvam-2b-v0.5-Q2_K-GGUF", "filename": "sarvam-2b-v0.5-q2_k.gguf", "name": "Sarvam 2B v0.5"},
|
33 |
{"repo_id": "Ffftdtd5dtft/WizardLM-13B-Uncensored-Q2_K-GGUF", "filename": "wizardlm-13b-uncensored-q2_k.gguf", "name": "WizardLM 13B Uncensored"},
|
|
|
34 |
{"repo_id": "Ffftdtd5dtft/WizardLM-7B-Uncensored-Q2_K-GGUF", "filename": "wizardlm-7b-uncensored-q2_k.gguf", "name": "WizardLM 7B Uncensored"},
|
35 |
{"repo_id": "Ffftdtd5dtft/Qwen2-Math-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-math-7b-instruct-q2_k.gguf", "name": "Qwen2 Math 7B Instruct"}
|
36 |
]
|
37 |
|
38 |
-
# Clase para gestionar modelos
|
39 |
class ModelManager:
|
40 |
def __init__(self):
|
41 |
-
self.models =
|
42 |
-
self.
|
|
|
|
|
|
|
43 |
|
44 |
async def download_model_to_memory(self, model_config):
|
45 |
-
print(f"Descargando modelo: {model_config['name']}...")
|
46 |
url = f"https://huggingface.co/{model_config['repo_id']}/resolve/main/{model_config['filename']}"
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
return
|
51 |
-
|
52 |
-
raise
|
53 |
|
54 |
async def load_model(self, model_config):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
try:
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
# Cargar el modelo usando llama_cpp
|
61 |
-
llama = await asyncio.get_event_loop().run_in_executor(
|
62 |
None,
|
63 |
-
lambda:
|
64 |
)
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
# Almacenar tokens y tokenizer en la RAM
|
78 |
-
model_data = {
|
79 |
-
'model': llama,
|
80 |
-
'tokenizer': tokenizer,
|
81 |
-
'pad_token': tokenizer.pad_token,
|
82 |
-
'pad_token_id': tokenizer.pad_token_id,
|
83 |
-
'eos_token': tokenizer.eos_token,
|
84 |
-
'eos_token_id': tokenizer.eos_token_id,
|
85 |
-
'bos_token': tokenizer.bos_token,
|
86 |
-
'bos_token_id': tokenizer.bos_token_id,
|
87 |
-
'unk_token': tokenizer.unk_token,
|
88 |
-
'unk_token_id': tokenizer.unk_token_id
|
89 |
-
}
|
90 |
-
|
91 |
-
self.models.append({"model_data": model_data, "name": model_config['name']})
|
92 |
except Exception as e:
|
93 |
-
print(f"Error al
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
# Instanciar ModelManager y cargar modelos
|
104 |
-
model_manager = ModelManager()
|
105 |
-
|
106 |
-
@app.on_event("startup")
|
107 |
-
async def startup_event():
|
108 |
-
await model_manager.load_all_models()
|
109 |
-
|
110 |
-
# Modelo global para la solicitud de chat
|
111 |
-
class ChatRequest(BaseModel):
|
112 |
-
message: str
|
113 |
-
top_k: int = 50
|
114 |
-
top_p: float = 0.95
|
115 |
-
temperature: float = 0.7
|
116 |
-
|
117 |
-
# L铆mite de tokens para respuestas
|
118 |
-
TOKEN_LIMIT = 1000 # Define el l铆mite de tokens permitido por respuesta
|
119 |
-
|
120 |
-
# Funci贸n para generar respuestas de chat
|
121 |
-
async def generate_chat_response(request, model_data):
|
122 |
try:
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
# Generar respuesta de manera r谩pida
|
128 |
-
response = await asyncio.get_event_loop().run_in_executor(
|
129 |
-
None,
|
130 |
-
lambda: llama.generate(user_input, max_length=TOKEN_LIMIT, do_sample=True, top_k=request.top_k, top_p=request.top_p, temperature=request.temperature)
|
131 |
-
)
|
132 |
-
generated_text = response['generated_text']
|
133 |
-
# Dividir respuesta larga
|
134 |
-
split_response = split_long_response(generated_text)
|
135 |
-
return {"response": split_response, "literal": user_input, "model_name": model_data['name']}
|
136 |
except Exception as e:
|
137 |
-
|
138 |
-
return {"response": "Error al generar la respuesta", "literal": user_input, "model_name": model_data['name']}
|
139 |
-
|
140 |
-
def split_long_response(response):
|
141 |
-
""" Divide la respuesta en partes m谩s peque帽as si excede el l铆mite de tokens. """
|
142 |
-
parts = []
|
143 |
-
while len(response) > TOKEN_LIMIT:
|
144 |
-
part = response[:TOKEN_LIMIT]
|
145 |
-
response = response[TOKEN_LIMIT:]
|
146 |
-
parts.append(part.strip())
|
147 |
-
if response:
|
148 |
-
parts.append(response.strip())
|
149 |
-
return '\n'.join(parts)
|
150 |
-
|
151 |
-
def remove_duplicates(text):
|
152 |
-
""" Elimina duplicados en el texto. """
|
153 |
-
lines = text.splitlines()
|
154 |
-
unique_lines = list(dict.fromkeys(lines))
|
155 |
-
return '\n'.join(unique_lines)
|
156 |
-
|
157 |
-
def remove_repetitive_responses(responses):
|
158 |
-
unique_responses = []
|
159 |
-
seen_responses = set()
|
160 |
-
for response in responses:
|
161 |
-
normalized_response = remove_duplicates(response['response'])
|
162 |
-
if normalized_response not in seen_responses:
|
163 |
-
seen_responses.add(normalized_response)
|
164 |
-
response['response'] = normalized_response
|
165 |
-
unique_responses.append(response)
|
166 |
-
return unique_responses
|
167 |
|
168 |
-
|
169 |
-
async def chat(request: ChatRequest):
|
170 |
-
results = []
|
171 |
-
for model_data in model_manager.models:
|
172 |
-
response = await generate_chat_response(request, model_data)
|
173 |
-
results.append(response)
|
174 |
-
unique_results = remove_repetitive_responses(results)
|
175 |
-
return {"results": unique_results}
|
176 |
-
|
177 |
-
# Ejecutar la aplicaci贸n FastAPI
|
178 |
-
if __name__ == "__main__":
|
179 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException, Request
|
2 |
from pydantic import BaseModel
|
|
|
|
|
|
|
3 |
import uvicorn
|
|
|
|
|
4 |
import requests
|
5 |
+
import io
|
6 |
import asyncio
|
7 |
+
from typing import List, Dict, Any
|
8 |
+
from llama_cpp import Llama # Ajusta seg煤n la biblioteca que est茅s utilizando
|
|
|
|
|
9 |
|
|
|
10 |
app = FastAPI()
|
11 |
|
12 |
# Configuraci贸n de los modelos
|
|
|
24 |
{"repo_id": "Ffftdtd5dtft/gemma-2-2b-it-Q2_K-GGUF", "filename": "gemma-2-2b-it-q2_k.gguf", "name": "Gemma 2-2B IT"},
|
25 |
{"repo_id": "Ffftdtd5dtft/sarvam-2b-v0.5-Q2_K-GGUF", "filename": "sarvam-2b-v0.5-q2_k.gguf", "name": "Sarvam 2B v0.5"},
|
26 |
{"repo_id": "Ffftdtd5dtft/WizardLM-13B-Uncensored-Q2_K-GGUF", "filename": "wizardlm-13b-uncensored-q2_k.gguf", "name": "WizardLM 13B Uncensored"},
|
27 |
+
{"repo_id": "Ffftdtd5dtft/Qwen2-Math-72B-Instruct-Q2_K-GGUF", "filename": "qwen2-math-72b-instruct-q2_k.gguf", "name": "Qwen2 Math 72B Instruct"},
|
28 |
{"repo_id": "Ffftdtd5dtft/WizardLM-7B-Uncensored-Q2_K-GGUF", "filename": "wizardlm-7b-uncensored-q2_k.gguf", "name": "WizardLM 7B Uncensored"},
|
29 |
{"repo_id": "Ffftdtd5dtft/Qwen2-Math-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-math-7b-instruct-q2_k.gguf", "name": "Qwen2 Math 7B Instruct"}
|
30 |
]
|
31 |
|
|
|
32 |
class ModelManager:
|
33 |
def __init__(self):
|
34 |
+
self.models = {}
|
35 |
+
self.model_parts = {}
|
36 |
+
self.load_lock = asyncio.Lock()
|
37 |
+
self.index_lock = asyncio.Lock()
|
38 |
+
self.part_size = 1024 * 1024 # Tama帽o de cada parte en bytes (1 MB)
|
39 |
|
40 |
async def download_model_to_memory(self, model_config):
|
|
|
41 |
url = f"https://huggingface.co/{model_config['repo_id']}/resolve/main/{model_config['filename']}"
|
42 |
+
try:
|
43 |
+
response = requests.get(url)
|
44 |
+
response.raise_for_status()
|
45 |
+
return io.BytesIO(response.content)
|
46 |
+
except requests.RequestException as e:
|
47 |
+
raise HTTPException(status_code=500, detail=f"Error al descargar el modelo: {e}")
|
48 |
|
49 |
async def load_model(self, model_config):
|
50 |
+
async with self.load_lock:
|
51 |
+
try:
|
52 |
+
model_file = await self.download_model_to_memory(model_config)
|
53 |
+
llama = Llama(model_file) # Ajusta seg煤n la biblioteca y clase correctas
|
54 |
+
|
55 |
+
tokenizer = llama.tokenizer
|
56 |
+
model_data = {
|
57 |
+
'model': llama,
|
58 |
+
'tokenizer': tokenizer,
|
59 |
+
'pad_token': tokenizer.pad_token,
|
60 |
+
'pad_token_id': tokenizer.pad_token_id,
|
61 |
+
'eos_token': tokenizer.eos_token,
|
62 |
+
'eos_token_id': tokenizer.eos_token_id,
|
63 |
+
'bos_token': tokenizer.bos_token,
|
64 |
+
'bos_token_id': tokenizer.bos_token_id,
|
65 |
+
'unk_token': tokenizer.unk_token,
|
66 |
+
'unk_token_id': tokenizer.unk_token_id
|
67 |
+
}
|
68 |
+
|
69 |
+
self.models[model_config['name']] = model_data
|
70 |
+
await self.handle_large_model(model_config, model_file)
|
71 |
+
except Exception as e:
|
72 |
+
print(f"Error al cargar el modelo: {e}")
|
73 |
+
|
74 |
+
async def handle_large_model(self, model_config, model_file):
|
75 |
+
total_size = len(model_file.getvalue())
|
76 |
+
num_parts = (total_size + self.part_size - 1) // self.part_size
|
77 |
+
|
78 |
+
for i in range(num_parts):
|
79 |
+
start = i * self.part_size
|
80 |
+
end = min(start + self.part_size, total_size)
|
81 |
+
model_part = io.BytesIO(model_file.getvalue()[start:end])
|
82 |
+
await self.index_model_part(model_part, i)
|
83 |
+
|
84 |
+
async def index_model_part(self, model_part, part_index):
|
85 |
+
async with self.index_lock:
|
86 |
+
part_name = f"part_{part_index}"
|
87 |
+
llama_part = Llama(model_part)
|
88 |
+
self.model_parts[part_name] = llama_part
|
89 |
+
|
90 |
+
async def generate_response(self, user_input):
|
91 |
+
tasks = [self.generate_chat_response(user_input, model_data) for model_data in self.models.values()]
|
92 |
+
responses = await asyncio.gather(*tasks)
|
93 |
+
return responses
|
94 |
+
|
95 |
+
async def generate_chat_response(self, user_input, model_data):
|
96 |
try:
|
97 |
+
llama = model_data['model']
|
98 |
+
tokenizer = model_data['tokenizer']
|
99 |
+
|
100 |
+
response = await asyncio.get_event_loop().run_in_executor(
|
|
|
|
|
101 |
None,
|
102 |
+
lambda: llama.generate(user_input, max_length=1000, do_sample=True)
|
103 |
)
|
104 |
+
generated_text = response['generated_text']
|
105 |
+
|
106 |
+
# Dividir el texto generado en partes si es necesario
|
107 |
+
parts = []
|
108 |
+
while len(generated_text) > 1000:
|
109 |
+
part = generated_text[:1000]
|
110 |
+
generated_text = generated_text[1000:]
|
111 |
+
parts.append(part.strip())
|
112 |
+
if generated_text:
|
113 |
+
parts.append(generated_text.strip())
|
114 |
+
|
115 |
+
return {"response": '\n'.join(parts), "model_name": model_data['name']}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
except Exception as e:
|
117 |
+
print(f"Error al generar la respuesta: {e}")
|
118 |
+
return {"response": "Error al generar la respuesta", "model_name": model_data['name']}
|
119 |
+
|
120 |
+
@app.post("/chat")
|
121 |
+
async def chat(request: Request):
|
122 |
+
body = await request.json()
|
123 |
+
user_input = body.get('message', '').strip()
|
124 |
+
if not user_input:
|
125 |
+
raise HTTPException(status_code=400, detail="El mensaje no puede estar vac铆o.")
|
126 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
try:
|
128 |
+
model_manager = ModelManager()
|
129 |
+
responses = await model_manager.generate_response(user_input)
|
130 |
+
return {"responses": responses}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
except Exception as e:
|
132 |
+
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
+
def start_uvicorn():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
136 |
+
|
137 |
+
if __name__ == "__main__":
|
138 |
+
loop = asyncio.get_event_loop()
|
139 |
+
model_manager = ModelManager()
|
140 |
+
tasks = [model_manager.load_model(config) for config in model_configs]
|
141 |
+
loop.run_until_complete(asyncio.gather(*tasks))
|
142 |
+
start_uvicorn()
|