|
import gradio as gr |
|
|
|
from all_models import models |
|
from externalmod import gr_Interface_load, save_image, randomize_seed |
|
import asyncio |
|
import os |
|
from threading import RLock |
|
lock = RLock() |
|
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None |
|
|
|
|
|
def load_fn(models): |
|
global models_load |
|
models_load = {} |
|
for model in models: |
|
if model not in models_load.keys(): |
|
try: |
|
m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN) |
|
except Exception as error: |
|
print(error) |
|
m = gr.Interface(lambda: None, ['text'], ['image']) |
|
models_load.update({model: m}) |
|
|
|
|
|
load_fn(models) |
|
|
|
|
|
num_models = 6 |
|
inference_timeout = 600 |
|
default_models = models[:num_models] |
|
MAX_SEED = 3999999999 |
|
|
|
|
|
def extend_choices(choices): |
|
return choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA'] |
|
|
|
|
|
def update_imgbox(choices): |
|
choices_plus = extend_choices(choices[:num_models]) |
|
return [gr.Image(None, label=m, visible=(m!='NA')) for m in choices_plus] |
|
|
|
|
|
def random_choices(): |
|
import random |
|
random.seed() |
|
|
|
|
|
|
|
|
|
|
|
async def infer(model_str, prompt, nprompt="", height=0, width=0, cfg=0, seed=-1, timeout=inference_timeout): |
|
kwargs = {} |
|
if height > 0: kwargs["height"] = height |
|
if width > 0: kwargs["width"] = width |
|
if cfg > 0: cfg = kwargs["guidance_scale"] = cfg |
|
if seed == -1: kwargs["seed"] = randomize_seed() |
|
else: kwargs["seed"] = seed |
|
task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn, |
|
prompt=prompt, negative_prompt=nprompt, **kwargs, token=HF_TOKEN)) |
|
await asyncio.sleep(0) |
|
try: |
|
result = await asyncio.wait_for(task, timeout=timeout) |
|
except asyncio.TimeoutError as e: |
|
print(e) |
|
print(f"Task timed out: {model_str}") |
|
if not task.done(): task.cancel() |
|
result = None |
|
raise Exception(f"Task timed out: {model_str}") from e |
|
except Exception as e: |
|
print(e) |
|
if not task.done(): task.cancel() |
|
result = None |
|
raise Exception() from e |
|
if task.done() and result is not None and not isinstance(result, tuple): |
|
with lock: |
|
png_path = "image.png" |
|
image = save_image(result, png_path, model_str, prompt, nprompt, height, width, cfg, seed) |
|
return image |
|
return None |
|
|
|
|
|
def gen_fn(model_str, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1): |
|
try: |
|
loop = asyncio.new_event_loop() |
|
result = loop.run_until_complete(infer(model_str, prompt, nprompt, |
|
height, width, steps, cfg, seed, inference_timeout)) |
|
except (Exception, asyncio.CancelledError) as e: |
|
print(e) |
|
print(f"Task aborted: {model_str}") |
|
result = None |
|
raise gr.Error(f"Task aborted: {model_str}, Error: {e}") |
|
finally: |
|
loop.close() |
|
return result |
|
|
|
|
|
def add_gallery(image, model_str, gallery): |
|
if gallery is None: gallery = [] |
|
with lock: |
|
if image is not None: gallery.insert(0, (image, model_str)) |
|
return gallery |
|
|
|
|
|
CSS=""" |
|
.gradio-container { max-width: 1200px; margin: 0 auto; !important; } |
|
.output { width=112px; height=112px; max_width=112px; max_height=112px; !important; } |
|
.gallery { min_width=512px; min_height=512px; max_height=1024px; !important; } |
|
.guide { text-align: center; !important; } |
|
""" |
|
|
|
|
|
with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=CSS) as demo: |
|
gr.HTML( |
|
""" |
|
<div> |
|
<p> <center>For more options like single model x6 check out <a href="https://huggingface.co/spaces/John6666/Diffusion80XX4sg">Diffusion80XX4sg</a> by John6666!</center> |
|
</p></div> |
|
""" |
|
) |
|
with gr.Tab('Huggingface Diffusion'): |
|
with gr.Column(scale=2): |
|
with gr.Group(): |
|
txt_input = gr.Textbox(label='Your prompt:', lines=4) |
|
neg_input = gr.Textbox(label='Negative prompt:', lines=1) |
|
with gr.Accordion("Advanced", open=False, visible=True): |
|
with gr.Row(): |
|
width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0) |
|
height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0) |
|
with gr.Row(): |
|
cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0) |
|
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1) |
|
seed_rand = gr.Button("Randomize Seed ??", size="sm", variant="secondary") |
|
seed_rand.click(randomize_seed, None, [seed], queue=False) |
|
with gr.Row(): |
|
gen_button = gr.Button(f'Generate up to {int(num_models)} images from 10 seconds to 3 minutes total', variant='primary', scale=3) |
|
|
|
|
|
gr.Markdown("Scroll down to see more images and select models.", elem_classes="guide") |
|
|
|
with gr.Column(scale=1): |
|
with gr.Group(): |
|
with gr.Row(): |
|
output = [gr.Image(label=m, show_download_button=True, elem_classes="output", |
|
interactive=False, min_width=80, show_share_button=False, format="png", |
|
visible=True) for m in default_models] |
|
current_models = [gr.Textbox(m, visible=False) for m in default_models] |
|
|
|
with gr.Column(scale=2): |
|
gallery = gr.Gallery(label="Output", show_download_button=True, elem_classes="gallery", |
|
interactive=False, show_share_button=True, container=True, format="png", |
|
preview=True, object_fit="cover", columns=2, rows=2) |
|
|
|
for m, o in zip(current_models, output): |
|
gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn, |
|
inputs=[m, txt_input, neg_input, height, width, cfg, seed], outputs=[o], |
|
concurrency_limit=None, queue=False) |
|
o.change(add_gallery, [o, m, gallery], [gallery]) |
|
|
|
|
|
with gr.Column(scale=4): |
|
with gr.Accordion('Model selection'): |
|
model_choice = gr.CheckboxGroup(models, label = f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True) |
|
model_choice.change(update_imgbox, model_choice, output) |
|
model_choice.change(extend_choices, model_choice, current_models) |
|
|
|
|
|
gr.Markdown("Based on the [TestGen](https://huggingface.co/spaces/derwahnsinn/TestGen) Space by derwahnsinn, the [SpacIO](https://huggingface.co/spaces/RdnUser77/SpacIO_v1) Space by RdnUser77 and Omnibus's Maximum Multiplier!") |
|
|
|
demo.queue(default_concurrency_limit=200, max_size=200) |
|
demo.launch(show_api=False, max_threads=400) |
|
|
|
|