File size: 13,557 Bytes
fe643f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
import marimo

__generated_with = "0.11.9"
app = marimo.App()


@app.cell(hide_code=True)
def _():
    import marimo as mo
    import synalinks

    synalinks.backend.clear_session()
    return mo, synalinks


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        # Control Flow

        Controlling the flow of information in a program is an essential feature of any LM framework.
        In Synalinks, we implemented it in circuit-like fashion, where the flow of information can be 
        conditionaly or logically restricted to only flow in a subset of a computation graph.

        ## Parallel Branches

        To create parallel branches, all you need to do is using the same inputs when declaring the modules.
        Then Synalinks will automatically detect them and run them in parrallel with asyncio.
        """
    )
    return


@app.cell
async def _(synalinks):
    class Query(synalinks.DataModel):
        query: str = synalinks.Field(
            description="The user query",
        )

    class AnswerWithThinking(synalinks.DataModel):
        thinking: str = synalinks.Field(
            description="Your step by step thinking process",
        )
        answer: str = synalinks.Field(
            description="The correct answer",
        )

    language_model = synalinks.LanguageModel(model="ollama_chat/deepseek-r1")
    _x0 = synalinks.Input(data_model=Query)
    _x1 = await synalinks.Generator(
        data_model=AnswerWithThinking,
        language_model=language_model,
    )(_x0)
    _x2 = await synalinks.Generator(
        data_model=AnswerWithThinking,
        language_model=language_model,
    )(_x0)

    program = synalinks.Program(
        inputs=_x0,
        outputs=[_x1, _x2],
        name="parallel_branches",
        description="Illustrate the use of parallel branching",
    )
    return AnswerWithThinking, Query, language_model, program, synalinks


@app.cell
def _(mo, program, synalinks):
    synalinks.utils.plot_program(
        program,
        show_module_names=True,
        show_schemas=True,
        show_trainable=True,
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ## Decisions

        Decisions in Synalinks can be viewed as a single label classification, they allow
        the system to classify the inputs based on a question and labels to choose from.
        The labels are used to create on the fly a Enum schema that ensure, thanks to
        constrained structured output, that the system will answer one of the provided labels.
        """
    )
    return


@app.cell
async def _(Query, language_model, synalinks):
    _x0 = synalinks.Input(data_model=Query)
    _x1 = await synalinks.Decision(
        question="Evaluate the difficulty to answer the provided query",
        labels=["easy", "difficult"],
        language_model=language_model,
    )(_x0)

    program_1 = synalinks.Program(
        inputs=_x0,
        outputs=_x1,
        name="decision_making",
        description="Illustrate the decision making process",
    )
    return (program_1,)


@app.cell
def _(mo, program_1, synalinks):
    synalinks.utils.plot_program(
        program_1,
        show_module_names=True,
        show_schemas=True,
        show_trainable=True,
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ## Conditional Branches

        To make conditional branches, we will need the help of a core module: The Branch
        module. This module use a decision and route the input data model to the selected
        branch. When a branch is not selected, that branch output a None.
        """
    )
    return


@app.cell
async def _(AnswerWithThinking, Query, language_model, synalinks):
    class Answer(synalinks.DataModel):
        answer: str = synalinks.Field(
            description="The correct answer",
        )

    _x0 = synalinks.Input(data_model=Query)
    (_x1, _x2) = await synalinks.Branch(
        question="Evaluate the difficulty to answer the provided query",
        labels=["easy", "difficult"],
        branches=[
            synalinks.Generator(
                data_model=Answer,
                language_model=language_model,
            ),
            synalinks.Generator(
                data_model=AnswerWithThinking,
                language_model=language_model,
            ),
        ],
    )(_x0)

    program_2 = synalinks.Program(
        inputs=_x0,
        outputs=[_x1, _x2],
        name="conditional_branches",
        description="Illustrate the conditional branches",
    )
    return Answer, program_2


@app.cell
def _(mo, program_2, synalinks):
    synalinks.utils.plot_program(
        program_2,
        show_module_names=True,
        show_schemas=True,
        show_trainable=True,
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ## Data Models Operators

        Synalinks implement few operators that works with data models, some of them are
        straightforward, like the concatenation, implemented in the Python `+` operator. 
        But others like the `logical_and` and `logical_or` implemented respectively 
        in the `&` and `|` operator are more difficult to grasp at first. As explained
        above, in the conditional branches, the branch not selected will have a None 
        as output. To account that fact and to implement logical flows, we need operators
        that can work with them. See the [Ops API](https://synalinks.github.io/synalinks/Synalinks%20API/Ops%20API/)
        section for an extensive list of all data model operations.

        ### Concatenation

        The concatenation, consist in creating a data model that have the fields of both
        inputs. When one of the input is `None`, it raise an exception. Note that you can
        use the concatenation, like any other operator, at a meta-class level, meaning
        you can actually concatenate data model types.

        ### Concatenation Table
        """
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        | `x1`   | `x2`   | Concat (`+`)      |
        | ------ | ------ | ----------------- |
        | `x1`   | `x2`   | `x1 + x2`         |
        | `x1`   | `None` | `Exception`       |
        | `None` | `x2`   | `Exception`       |
        | `None` | `None` | `Exception`       |
        """
    ).center()
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ### Concatenation Example
        """
    )
    return


@app.cell
async def _(AnswerWithThinking, Query, language_model, synalinks):
    _x0 = synalinks.Input(data_model=Query)
    _x1 = await synalinks.Generator(
        data_model=AnswerWithThinking,
        language_model=language_model,
    )(_x0)
    _x2 = await synalinks.Generator(
        data_model=AnswerWithThinking,
        language_model=language_model,
    )(_x0)
    _x3 = _x1 + _x2

    program_3 = synalinks.Program(
        inputs=_x0,
        outputs=_x3,
        name="concatenation",
        description="Illustrate the use of concatenate",
    )
    return (program_3,)


@app.cell
def _(mo, program_3, synalinks):
    synalinks.utils.plot_program(
        program_3,
        show_module_names=True,
        show_schemas=True,
        show_trainable=True,
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ### Logical And

        The `logical_and` is a concatenation that instead of raising an `Exception`,
        output a `None`. This operator should be used, when you have to concatenate
        a data model with an another one that can be `None`, like a `Branch` output.

        ### Logical And Table
        """
    )
    return

@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        | `x1`   | `x2`   | Logical And (`&`) |
        | ------ | ------ | ----------------- |
        | `x1`   | `x2`   | `x1 + x2`         |
        | `x1`   | `None` | `None`            |
        | `None` | `x2`   | `None`            |
        | `None` | `None` | `None`            |
        """
    ).center()
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ### Logical And Example
        """
    )
    return

@app.cell
async def _(Answer, AnswerWithThinking, Query, language_model, synalinks):
    class Critique(synalinks.DataModel):
        critique: str = synalinks.Field(
            description="The critique of the answer",
        )

    _x0 = synalinks.Input(data_model=Query)
    (_x1, _x2) = await synalinks.Branch(
        question="Evaluate the difficulty to answer the provided query",
        labels=["easy", "difficult"],
        branches=[
            synalinks.Generator(
                data_model=Answer,
                language_model=language_model,
            ),
            synalinks.Generator(
                data_model=AnswerWithThinking,
                language_model=language_model,
            ),
        ],
        return_decision=False,
    )(_x0)
    _x3 = _x0 & _x1
    _x4 = _x0 & _x2
    _x5 = await synalinks.Generator(
        data_model=Critique,
        language_model=language_model,
        return_inputs=True,
    )(_x3)
    _x6 = await synalinks.Generator(
        data_model=Critique,
        language_model=language_model,
        return_inputs=True,
    )(_x4)
    _x7 = _x5 | _x6
    _x8 = await synalinks.Generator(
        data_model=Answer,
        language_model=language_model,
    )(_x7)

    program_4 = synalinks.Program(
        inputs=_x0,
        outputs=_x8,
        name="logical_and",
        description="Illustrate the use of logical and",
    )
    return Critique, program_4


@app.cell
def _(mo, program_4, synalinks):
    synalinks.utils.plot_program(
        program_4,
        show_module_names=True,
        show_schemas=True,
        show_trainable=True,
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ### Logical Or

        The `logical_or` is used when you want to combine two data models, but you can
        accomodate that one of them is `None`. Another use, is to gather the outputs of
        a `Branch`, as only one branch is active, it allows you merge the branches outputs 
        into a unique data model.


        ### Logical Or Table
        """
    )
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        | `x1`   | `x2`   | Logical Or (`|`) |
        | ------ | ------ | ---------------- |
        | `x1`   | `x2`   | `x1 + x2`        |
        | `x1`   | `None` | `x1`             |
        | `None` | `x2`   | `x2`             |
        | `None` | `None` | `None`           |
        """
    ).center()
    return


@app.cell(hide_code=True)
def _(mo):
    mo.md(
        r"""
        ### Logical Or Example
        """
    )
    return


@app.cell
async def _(Answer, AnswerWithThinking, Query, language_model, synalinks):
    _x0 = synalinks.Input(data_model=Query)
    (_x1, _x2) = await synalinks.Branch(
        question="Evaluate the difficulty to answer the provided query",
        labels=["easy", "difficult"],
        branches=[
            synalinks.Generator(
                data_model=Answer,
                language_model=language_model,
            ),
            synalinks.Generator(
                data_model=AnswerWithThinking, language_model=language_model
            ),
        ],
        return_decision=False,
    )(_x0)
    _x3 = _x1 | _x2

    program_5 = synalinks.Program(
        inputs=_x0,
        outputs=_x3,
        name="logical_or",
        description="Illustrate the use of logical or",
    )
    return (program_5,)


@app.cell
def _(mo, program_5, synalinks):
    synalinks.utils.plot_program(
        program_5,
        show_module_names=True,
        show_schemas=True,
        show_trainable=True,
    )
    return


@app.cell(hide_code=True)
async def _(mo):
    mo.md(
        r"""
        ## Conclusion

        In this notebook, we explored the fundamental concepts of controlling information
        flow within Synalinks programs. We intoduced the creation of parallel branches, 
        decision-making processes, and conditional branching, all of which are essential 
        for building dynamic and robust applications.

        ### Key Takeaways

        - **Parallel Branches**: We demonstrated how to run modules in parallel using 
            the same inputs, leveraging asyncio for concurrent execution. 
            This approach enhances performance and allows for simultaneous processing of tasks.

        - **Decision-Making**: We introduced decision-making as a form of single-label 
            classification, enabling the system to classify inputs based on predefined 
            questions and labels. This ensures that the system's responses are structured 
            and adhere to the specified schemas.

        - **Conditional Branching**: We explored the use of the Branch module to route 
            input data models based on decisions, allowing for conditional execution of 
            branches. This feature is essential for creating adaptive and context-aware 
            applications.

        - **Data Model Operators**: We discussed various data model operators, such as 
            concatenation, logical AND, and logical OR. These operators enable 
            sophisticated data manipulation and flow control, ensuring robust program
            execution even when branches output None.
        """
    )
    return


if __name__ == "__main__":
    app.run()