import marimo __generated_with = "0.11.9" app = marimo.App() @app.cell(hide_code=True) def _(): import marimo as mo import synalinks synalinks.backend.clear_session() return mo, synalinks @app.cell(hide_code=True) def _(mo): mo.md( r""" # Control Flow Controlling the flow of information in a program is an essential feature of any LM framework. In Synalinks, we implemented it in circuit-like fashion, where the flow of information can be conditionaly or logically restricted to only flow in a subset of a computation graph. ## Parallel Branches To create parallel branches, all you need to do is using the same inputs when declaring the modules. Then Synalinks will automatically detect them and run them in parrallel with asyncio. """ ) return @app.cell async def _(synalinks): class Query(synalinks.DataModel): query: str = synalinks.Field( description="The user query", ) class AnswerWithThinking(synalinks.DataModel): thinking: str = synalinks.Field( description="Your step by step thinking process", ) answer: str = synalinks.Field( description="The correct answer", ) language_model = synalinks.LanguageModel(model="ollama_chat/deepseek-r1") _x0 = synalinks.Input(data_model=Query) _x1 = await synalinks.Generator( data_model=AnswerWithThinking, language_model=language_model, )(_x0) _x2 = await synalinks.Generator( data_model=AnswerWithThinking, language_model=language_model, )(_x0) program = synalinks.Program( inputs=_x0, outputs=[_x1, _x2], name="parallel_branches", description="Illustrate the use of parallel branching", ) return AnswerWithThinking, Query, language_model, program, synalinks @app.cell def _(mo, program, synalinks): synalinks.utils.plot_program( program, show_module_names=True, show_schemas=True, show_trainable=True, ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" ## Decisions Decisions in Synalinks can be viewed as a single label classification, they allow the system to classify the inputs based on a question and labels to choose from. The labels are used to create on the fly a Enum schema that ensure, thanks to constrained structured output, that the system will answer one of the provided labels. """ ) return @app.cell async def _(Query, language_model, synalinks): _x0 = synalinks.Input(data_model=Query) _x1 = await synalinks.Decision( question="Evaluate the difficulty to answer the provided query", labels=["easy", "difficult"], language_model=language_model, )(_x0) program_1 = synalinks.Program( inputs=_x0, outputs=_x1, name="decision_making", description="Illustrate the decision making process", ) return (program_1,) @app.cell def _(mo, program_1, synalinks): synalinks.utils.plot_program( program_1, show_module_names=True, show_schemas=True, show_trainable=True, ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" ## Conditional Branches To make conditional branches, we will need the help of a core module: The Branch module. This module use a decision and route the input data model to the selected branch. When a branch is not selected, that branch output a None. """ ) return @app.cell async def _(AnswerWithThinking, Query, language_model, synalinks): class Answer(synalinks.DataModel): answer: str = synalinks.Field( description="The correct answer", ) _x0 = synalinks.Input(data_model=Query) (_x1, _x2) = await synalinks.Branch( question="Evaluate the difficulty to answer the provided query", labels=["easy", "difficult"], branches=[ synalinks.Generator( data_model=Answer, language_model=language_model, ), synalinks.Generator( data_model=AnswerWithThinking, language_model=language_model, ), ], )(_x0) program_2 = synalinks.Program( inputs=_x0, outputs=[_x1, _x2], name="conditional_branches", description="Illustrate the conditional branches", ) return Answer, program_2 @app.cell def _(mo, program_2, synalinks): synalinks.utils.plot_program( program_2, show_module_names=True, show_schemas=True, show_trainable=True, ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" ## Data Models Operators Synalinks implement few operators that works with data models, some of them are straightforward, like the concatenation, implemented in the Python `+` operator. But others like the `logical_and` and `logical_or` implemented respectively in the `&` and `|` operator are more difficult to grasp at first. As explained above, in the conditional branches, the branch not selected will have a None as output. To account that fact and to implement logical flows, we need operators that can work with them. See the [Ops API](https://synalinks.github.io/synalinks/Synalinks%20API/Ops%20API/) section for an extensive list of all data model operations. ### Concatenation The concatenation, consist in creating a data model that have the fields of both inputs. When one of the input is `None`, it raise an exception. Note that you can use the concatenation, like any other operator, at a meta-class level, meaning you can actually concatenate data model types. ### Concatenation Table """ ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" | `x1` | `x2` | Concat (`+`) | | ------ | ------ | ----------------- | | `x1` | `x2` | `x1 + x2` | | `x1` | `None` | `Exception` | | `None` | `x2` | `Exception` | | `None` | `None` | `Exception` | """ ).center() return @app.cell(hide_code=True) def _(mo): mo.md( r""" ### Concatenation Example """ ) return @app.cell async def _(AnswerWithThinking, Query, language_model, synalinks): _x0 = synalinks.Input(data_model=Query) _x1 = await synalinks.Generator( data_model=AnswerWithThinking, language_model=language_model, )(_x0) _x2 = await synalinks.Generator( data_model=AnswerWithThinking, language_model=language_model, )(_x0) _x3 = _x1 + _x2 program_3 = synalinks.Program( inputs=_x0, outputs=_x3, name="concatenation", description="Illustrate the use of concatenate", ) return (program_3,) @app.cell def _(mo, program_3, synalinks): synalinks.utils.plot_program( program_3, show_module_names=True, show_schemas=True, show_trainable=True, ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" ### Logical And The `logical_and` is a concatenation that instead of raising an `Exception`, output a `None`. This operator should be used, when you have to concatenate a data model with an another one that can be `None`, like a `Branch` output. ### Logical And Table """ ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" | `x1` | `x2` | Logical And (`&`) | | ------ | ------ | ----------------- | | `x1` | `x2` | `x1 + x2` | | `x1` | `None` | `None` | | `None` | `x2` | `None` | | `None` | `None` | `None` | """ ).center() return @app.cell(hide_code=True) def _(mo): mo.md( r""" ### Logical And Example """ ) return @app.cell async def _(Answer, AnswerWithThinking, Query, language_model, synalinks): class Critique(synalinks.DataModel): critique: str = synalinks.Field( description="The critique of the answer", ) _x0 = synalinks.Input(data_model=Query) (_x1, _x2) = await synalinks.Branch( question="Evaluate the difficulty to answer the provided query", labels=["easy", "difficult"], branches=[ synalinks.Generator( data_model=Answer, language_model=language_model, ), synalinks.Generator( data_model=AnswerWithThinking, language_model=language_model, ), ], return_decision=False, )(_x0) _x3 = _x0 & _x1 _x4 = _x0 & _x2 _x5 = await synalinks.Generator( data_model=Critique, language_model=language_model, return_inputs=True, )(_x3) _x6 = await synalinks.Generator( data_model=Critique, language_model=language_model, return_inputs=True, )(_x4) _x7 = _x5 | _x6 _x8 = await synalinks.Generator( data_model=Answer, language_model=language_model, )(_x7) program_4 = synalinks.Program( inputs=_x0, outputs=_x8, name="logical_and", description="Illustrate the use of logical and", ) return Critique, program_4 @app.cell def _(mo, program_4, synalinks): synalinks.utils.plot_program( program_4, show_module_names=True, show_schemas=True, show_trainable=True, ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" ### Logical Or The `logical_or` is used when you want to combine two data models, but you can accomodate that one of them is `None`. Another use, is to gather the outputs of a `Branch`, as only one branch is active, it allows you merge the branches outputs into a unique data model. ### Logical Or Table """ ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" | `x1` | `x2` | Logical Or (`|`) | | ------ | ------ | ---------------- | | `x1` | `x2` | `x1 + x2` | | `x1` | `None` | `x1` | | `None` | `x2` | `x2` | | `None` | `None` | `None` | """ ).center() return @app.cell(hide_code=True) def _(mo): mo.md( r""" ### Logical Or Example """ ) return @app.cell async def _(Answer, AnswerWithThinking, Query, language_model, synalinks): _x0 = synalinks.Input(data_model=Query) (_x1, _x2) = await synalinks.Branch( question="Evaluate the difficulty to answer the provided query", labels=["easy", "difficult"], branches=[ synalinks.Generator( data_model=Answer, language_model=language_model, ), synalinks.Generator( data_model=AnswerWithThinking, language_model=language_model ), ], return_decision=False, )(_x0) _x3 = _x1 | _x2 program_5 = synalinks.Program( inputs=_x0, outputs=_x3, name="logical_or", description="Illustrate the use of logical or", ) return (program_5,) @app.cell def _(mo, program_5, synalinks): synalinks.utils.plot_program( program_5, show_module_names=True, show_schemas=True, show_trainable=True, ) return @app.cell(hide_code=True) async def _(mo): mo.md( r""" ## Conclusion In this notebook, we explored the fundamental concepts of controlling information flow within Synalinks programs. We intoduced the creation of parallel branches, decision-making processes, and conditional branching, all of which are essential for building dynamic and robust applications. ### Key Takeaways - **Parallel Branches**: We demonstrated how to run modules in parallel using the same inputs, leveraging asyncio for concurrent execution. This approach enhances performance and allows for simultaneous processing of tasks. - **Decision-Making**: We introduced decision-making as a form of single-label classification, enabling the system to classify inputs based on predefined questions and labels. This ensures that the system's responses are structured and adhere to the specified schemas. - **Conditional Branching**: We explored the use of the Branch module to route input data models based on decisions, allowing for conditional execution of branches. This feature is essential for creating adaptive and context-aware applications. - **Data Model Operators**: We discussed various data model operators, such as concatenation, logical AND, and logical OR. These operators enable sophisticated data manipulation and flow control, ensuring robust program execution even when branches output None. """ ) return if __name__ == "__main__": app.run()