Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,27 @@
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
from transformers import pipeline
|
4 |
-
import torch
|
5 |
-
|
6 |
-
|
7 |
-
# Load your model
|
8 |
-
classifier = pipeline("text-classification", model="YonasMersha/fine-tuned-distilbert-emotion", tokenizer='YonasMersha/fine_tuned_distilbert_emotion')
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Define the prediction function
|
12 |
def classify(text):
|
13 |
-
|
|
|
14 |
|
15 |
-
# Create the interface
|
16 |
-
iface = gr.Interface(
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
18 |
|
|
|
19 |
if __name__ == "__main__":
|
20 |
-
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
# Load the model and tokenizer from the same repository
|
5 |
+
classifier = pipeline(
|
6 |
+
"text-classification",
|
7 |
+
model="YonasMersha/fine-tuned-distilbert-emotion",
|
8 |
+
tokenizer="YonasMersha/fine-tuned-distilbert-emotion"
|
9 |
+
)
|
10 |
|
11 |
# Define the prediction function
|
12 |
def classify(text):
|
13 |
+
result = classifier(text)[0]
|
14 |
+
return result["label"]
|
15 |
|
16 |
+
# Create the Gradio interface
|
17 |
+
iface = gr.Interface(
|
18 |
+
fn=classify,
|
19 |
+
inputs=gr.Textbox(label="Enter a sentence", placeholder="e.g., I love this!"),
|
20 |
+
outputs=gr.Label(label="Predicted Emotion"),
|
21 |
+
title="Emotion Classifier",
|
22 |
+
description="Enter a sentence to classify its emotion (e.g., joy, sadness, anger)."
|
23 |
+
)
|
24 |
|
25 |
+
# Launch the interface
|
26 |
if __name__ == "__main__":
|
27 |
+
iface.launch()
|