YoneSlapWind80085 commited on
Commit
cb68ede
·
verified ·
1 Parent(s): 6ee628c

Create app1.py

Browse files
Files changed (1) hide show
  1. app1.py +41 -0
app1.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import pandas as pd
4
+ from sklearn.linear_model import LinearRegression
5
+ from sklearn.model_selection import train_test_split
6
+ from sklearn.datasets import fetch_california_housing
7
+ import pickle
8
+
9
+ # Load the data
10
+ california = fetch_california_housing()
11
+ df = pd.DataFrame(california.data, columns=california.feature_names)
12
+ df['MedHouseVal'] = california.target
13
+
14
+ # Prepare the data for the model
15
+ X = df[['MedInc']]
16
+ y = df['MedHouseVal']
17
+
18
+ # Split the data into training and testing sets
19
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
20
+
21
+ # Train the model
22
+ model = LinearRegression()
23
+ model.fit(X_train, y_train)
24
+
25
+ # Save the model
26
+ with open("linear_regression_model.pkl", "wb") as file:
27
+ pickle.dump(model, file)
28
+
29
+ # Load the model
30
+ with open("linear_regression_model.pkl", "rb") as file:
31
+ model = pickle.load(file)
32
+
33
+ # Define prediction function
34
+ def predict(med_inc):
35
+ X_new = np.array([[med_inc]])
36
+ prediction = model.predict(X_new)
37
+ return prediction[0]
38
+
39
+ # Create Gradio interface
40
+ iface = gr.Interface(fn=predict, inputs="number", outputs="number", title="California Housing Price Prediction")
41
+ iface.launch()