Spaces:
Sleeping
Sleeping
YoneSlapWind80085
commited on
Create app1.py
Browse files
app1.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
from sklearn.linear_model import LinearRegression
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
from sklearn.datasets import fetch_california_housing
|
7 |
+
import pickle
|
8 |
+
|
9 |
+
# Load the data
|
10 |
+
california = fetch_california_housing()
|
11 |
+
df = pd.DataFrame(california.data, columns=california.feature_names)
|
12 |
+
df['MedHouseVal'] = california.target
|
13 |
+
|
14 |
+
# Prepare the data for the model
|
15 |
+
X = df[['MedInc']]
|
16 |
+
y = df['MedHouseVal']
|
17 |
+
|
18 |
+
# Split the data into training and testing sets
|
19 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
20 |
+
|
21 |
+
# Train the model
|
22 |
+
model = LinearRegression()
|
23 |
+
model.fit(X_train, y_train)
|
24 |
+
|
25 |
+
# Save the model
|
26 |
+
with open("linear_regression_model.pkl", "wb") as file:
|
27 |
+
pickle.dump(model, file)
|
28 |
+
|
29 |
+
# Load the model
|
30 |
+
with open("linear_regression_model.pkl", "rb") as file:
|
31 |
+
model = pickle.load(file)
|
32 |
+
|
33 |
+
# Define prediction function
|
34 |
+
def predict(med_inc):
|
35 |
+
X_new = np.array([[med_inc]])
|
36 |
+
prediction = model.predict(X_new)
|
37 |
+
return prediction[0]
|
38 |
+
|
39 |
+
# Create Gradio interface
|
40 |
+
iface = gr.Interface(fn=predict, inputs="number", outputs="number", title="California Housing Price Prediction")
|
41 |
+
iface.launch()
|