File size: 8,978 Bytes
eaf0a9d
 
 
5f6c2e9
eaf0a9d
 
 
 
 
a3e474b
 
 
 
eaf0a9d
 
 
 
 
 
 
 
 
a14426e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eaf0a9d
 
a14426e
 
 
 
 
 
 
 
 
 
 
 
 
a3e474b
 
 
d9b2b02
a14426e
5bd78ff
a14426e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eaf0a9d
a14426e
eaf0a9d
a14426e
 
eaf0a9d
 
a14426e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eaf0a9d
 
 
 
 
 
 
 
a14426e
 
 
 
 
154b2d9
a14426e
 
 
 
486f5eb
 
 
a14426e
 
 
486f5eb
 
 
 
e7e45cc
 
 
e75eb9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
154b2d9
 
 
 
 
 
 
 
 
 
 
 
e75eb9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7e45cc
 
 
a14426e
e75eb9f
a14426e
eaf0a9d
 
a14426e
e75eb9f
eaf0a9d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import streamlit as st
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.datasets import fetch_california_housing
import pickle

from sklearn import datasets

from sklearn.metrics import mean_squared_error, r2_score

# Load the data
california = fetch_california_housing()
df = pd.DataFrame(california.data, columns=california.feature_names)
df['MedHouseVal'] = california.target

# Prepare the data for the model
X = df[['MedInc']]
y = df['MedHouseVal']

# Pairplot to visualize relationships between features and the target
plt.show()


plt.figure(figsize=(10, 8))
plt.show()

# Scatter plot for specific features against the target variable
features = ['MedInc', 'AveRooms', 'AveOccup', 'HouseAge']
for feature in features:
    plt.figure(figsize=(6, 4))
    plt.scatter(df[feature], df['MedHouseVal'], alpha=0.3)
    plt.title(f'MedHouseVal vs {feature}')
    plt.xlabel(feature)
    plt.ylabel('MedHouseVal')
    plt.show()
#5
# Select the predictor and target variable
X = df[['MedInc']]
y = df['MedHouseVal']

# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
print("Training and testing data split done.")

#6 7 and 8
#lineare regression model
model = LinearRegression()

# Fitting the model on the training data
model.fit(X_train, y_train)

# Making predictions on the test data
y_pred = model.predict(X_test)

# Evaluating the model
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
r2 = r2_score(y_test, y_pred)




# Plot the regression line
plt.figure(figsize=(8, 6))
plt.scatter(X_test, y_test, color='blue', alpha=0.3, label='Actual')
plt.plot(X_test, y_pred, color='red', linewidth=2, label='Predicted')
plt.title('Simple Linear Regression: MedInc vs MedHouseVal')
plt.xlabel('MedInc')
plt.ylabel('MedHouseVal')
plt.legend()
plt.show()

 #Split the data into training (80%) and testing (20%) sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Print the sizes of the training and testing sets
print(f"Training set size: {X_train.shape[0]} samples")
print(f"Testing set size: {X_test.shape[0]} samples")

# Create the linear regression model
model = LinearRegression()

# Fit the model on the training data
model.fit(X_train, y_train)

# Print the coefficients
print(f"Coefficients: {model.coef_}")
print(f"Intercept: {model.intercept_}")

# Make predictions on the test data
y_pred = model.predict(X_test)

# Calculate RMSE and R-squared
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
r2 = r2_score(y_test, y_pred)

print(f"Root Mean Squared Error (RMSE): {rmse}")
print(f"R-squared: {r2}")

# Scatter plot of actual vs. predicted values
plt.figure(figsize=(8, 6))
plt.scatter(y_test, y_pred, color='blue', alpha=0.3)
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'k--', lw=2, color='green')
plt.title('Multilinear Regression: Actual vs. Predicted MedHouseVal')
plt.xlabel('Actual MedHouseVal')
plt.ylabel('Predicted MedHouseVal')
plt.show()

#comparing the performance between RMSE and R-squared values
# Simple Linear Regression
# Select a single predictor
X_single = df[['MedInc']]
y = df['MedHouseVal']

# Split the data into training and testing sets
X_train_single, X_test_single, y_train_single, y_test_single = train_test_split(X_single, y, test_size=0.2, random_state=42)

# Create the linear regression model
model_single = LinearRegression()

# Fit the model on the training data
model_single.fit(X_train_single, y_train_single)

# Make predictions on the test data
y_pred_single = model_single.predict(X_test_single)

# Evaluate the model
mse_single = mean_squared_error(y_test_single, y_pred_single)
rmse_single = np.sqrt(mse_single)
r2_single = r2_score(y_test_single, y_pred_single)

print(f"Simple Linear Regression - RMSE: {rmse_single}")
print(f"Simple Linear Regression - R-squared: {r2_single}")

# Multilinear Regression
# Select multiple predictors
X_multi = df[['MedInc', 'AveRooms', 'HouseAge', 'AveOccup']]
y = df['MedHouseVal']

# Split the data into training and testing sets
X_train_multi, X_test_multi, y_train_multi, y_test_multi = train_test_split(X_multi, y, test_size=0.2, random_state=42)

# Create the linear regression model
model_multi = LinearRegression()

# Fit the model on the training data
model_multi.fit(X_train_multi, y_train_multi)

# Make predictions on the test data
y_pred_multi = model_multi.predict(X_test_multi)

# Evaluate the model
mse_multi = mean_squared_error(y_test_multi, y_pred_multi)
rmse_multi = np.sqrt(mse_multi)
r2_multi = r2_score(y_test_multi, y_pred_multi)

print(f"Multilinear Regression - RMSE: {rmse_multi}")
print(f"Multilinear Regression - R-squared: {r2_multi}")

#Residual Plot for Multilinear Regression
residuals = y_test_multi - y_pred_multi
plt.figure(figsize=(8, 6))
plt.scatter(y_pred_multi, residuals, color='blue', alpha=0.3)
plt.hlines(y=0, xmin=y_pred_multi.min(), xmax=y_pred_multi.max(), colors='red', linestyles='--', lw=2)
plt.title('Residual Plot: Multilinear Regression')
plt.xlabel('Predicted MedHouseVal')
plt.ylabel('Residuals')
plt.show()

# Save the model
with open("linear_regression_model.pkl", "wb") as file:
    pickle.dump(model, file)

# Load the model
with open("linear_regression_model.pkl", "rb") as file:
    model = pickle.load(file)

# Sidebar for user input features
st.sidebar.header('User Input Features')
selected_feature = st.sidebar.selectbox('Select feature for visualization', df.columns)
selected_target = st.sidebar.selectbox('Select target variable', df.columns)


    st.write(df)

# Visualization of selected feature
st.subheader(f'Distribution of {selected_feature}')
fig, ax = plt.subplots()
ax.hist(df[selected_feature], bins=30, edgecolor='black')
st.pyplot(fig)

# Scatter plot of selected feature vs target
st.subheader(f'Scatter plot of {selected_feature} vs {selected_target}')
fig, ax = plt.subplots()
ax.scatter(df[selected_feature], df[selected_target], alpha=0.3)
ax.set_xlabel(selected_feature)
ax.set_ylabel(selected_target)



# Simple Linear Regression
X_single = df[['MedInc']]
y = df['MedHouseVal']

X_train_single, X_test_single, y_train_single, y_test_single = train_test_split(X_single, y, test_size=0.2, random_state=42)

model_single = LinearRegression()
model_single.fit(X_train_single, y_train_single)

y_pred_single = model_single.predict(X_test_single)

r2_single = r2_score(y_test_single, y_pred_single)

# Plot the regression line for simple linear regression
fig, ax = plt.subplots()
ax.scatter(X_test_single, y_test_single, color='blue', alpha=0.3, label='Actual')
ax.plot(X_test_single, y_pred_single, color='red', linewidth=2, label='Predicted')
ax.set_title('Simple Linear Regression: MedInc vs MedHouseVal')
ax.set_xlabel('MedInc')
ax.set_ylabel('MedHouseVal')
ax.legend()
st.pyplot(fig)

# Multilinear Regression
X_multi = df[['MedInc', 'AveRooms', 'HouseAge', 'AveOccup']]
y = df['MedHouseVal']

X_train_multi, X_test_multi, y_train_multi, y_test_multi = train_test_split(X_multi, y, test_size=0.2, random_state=42)

model_multi = LinearRegression()
model_multi.fit(X_train_multi, y_train_multi)

y_pred_multi = model_multi.predict(X_test_multi)

r2_multi = r2_score(y_test_multi, y_pred_multi)

# Show regression line if selected
show_regression = st.checkbox('Show Regression Line')
if show_regression and selected_feature in df.columns and selected_target == 'MedHouseVal':
    X_feature = df[[selected_feature]]
    y = df[selected_target]
    model_feature = LinearRegression()
    model_feature.fit(X_feature, y)
    line = model_feature.predict(X_feature)
    ax.plot(df[selected_feature], line, color='red', linewidth=2)

st.pyplot(fig)

# Add checkbox for multilinear regression plot
show_multilinear_plot = st.checkbox('Show Multilinear Regression Plot')

if show_multilinear_plot:
    fig, ax = plt.subplots()
    ax.scatter(y_test_multi, y_pred_multi, color='blue', alpha=0.3)
    ax.plot([y_test_multi.min(), y_test_multi.max()], [y_test_multi.min(), y_test_multi.max()], 'k--', lw=2, color='green')
    ax.set_title('Multilinear Regression: Actual vs. Predicted MedHouseVal')
    ax.set_xlabel('Actual MedHouseVal')
    ax.set_ylabel('Predicted MedHouseVal')
    st.pyplot(fig)

# Compare R-squared values
st.subheader('R-squared Comparison')
st.write(f"Simple Linear Regression R-squared: {r2_single:.4f}")
st.write(f"Multilinear Regression R-squared: {r2_multi:.4f}")

# Prediction
st.subheader('Predict Median House Value')

input_values = {}
for feature in X_multi.columns:
    input_values[feature] = st.number_input(f'Enter {feature}', value=float(df[feature].mean()))

if st.button('Predict'):
    input_data = np.array([list(input_values.values())])
    prediction = model_multi.predict(input_data)
    st.write(f'Predicted Median House Value: {prediction[0]}')