Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,41 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
-
from sklearn.linear_model import LinearRegression
|
5 |
-
from sklearn.model_selection import train_test_split
|
6 |
-
from sklearn.datasets import fetch_california_housing
|
7 |
-
import pickle
|
8 |
-
|
9 |
-
# Load the data
|
10 |
-
california = fetch_california_housing()
|
11 |
-
df = pd.DataFrame(california.data, columns=california.feature_names)
|
12 |
-
df['MedHouseVal'] = california.target
|
13 |
-
|
14 |
-
# Prepare the data for the model
|
15 |
-
X = df[['MedInc']]
|
16 |
-
y = df['MedHouseVal']
|
17 |
-
|
18 |
-
# Split the data into training and testing sets
|
19 |
-
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
20 |
-
|
21 |
-
# Train the model
|
22 |
-
model = LinearRegression()
|
23 |
-
model.fit(X_train, y_train)
|
24 |
-
|
25 |
-
# Save the model
|
26 |
-
with open("linear_regression_model.pkl", "wb") as file:
|
27 |
-
pickle.dump(model, file)
|
28 |
-
|
29 |
-
# Load the model
|
30 |
-
with open("linear_regression_model.pkl", "rb") as file:
|
31 |
-
model = pickle.load(file)
|
32 |
-
|
33 |
-
# Define prediction function
|
34 |
-
def predict(med_inc):
|
35 |
-
X_new = np.array([[med_inc]])
|
36 |
-
prediction = model.predict(X_new)
|
37 |
-
return prediction[0]
|
38 |
-
|
39 |
-
# Create Gradio interface
|
40 |
-
iface = gr.Interface(fn=predict, inputs="number", outputs="number", title="California Housing Price Prediction")
|
41 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|