YoneSlapWind80085 commited on
Commit
0340664
·
verified ·
1 Parent(s): a78c205

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -41
app.py DELETED
@@ -1,41 +0,0 @@
1
- import gradio as gr
2
- import numpy as np
3
- import pandas as pd
4
- from sklearn.linear_model import LinearRegression
5
- from sklearn.model_selection import train_test_split
6
- from sklearn.datasets import fetch_california_housing
7
- import pickle
8
-
9
- # Load the data
10
- california = fetch_california_housing()
11
- df = pd.DataFrame(california.data, columns=california.feature_names)
12
- df['MedHouseVal'] = california.target
13
-
14
- # Prepare the data for the model
15
- X = df[['MedInc']]
16
- y = df['MedHouseVal']
17
-
18
- # Split the data into training and testing sets
19
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
20
-
21
- # Train the model
22
- model = LinearRegression()
23
- model.fit(X_train, y_train)
24
-
25
- # Save the model
26
- with open("linear_regression_model.pkl", "wb") as file:
27
- pickle.dump(model, file)
28
-
29
- # Load the model
30
- with open("linear_regression_model.pkl", "rb") as file:
31
- model = pickle.load(file)
32
-
33
- # Define prediction function
34
- def predict(med_inc):
35
- X_new = np.array([[med_inc]])
36
- prediction = model.predict(X_new)
37
- return prediction[0]
38
-
39
- # Create Gradio interface
40
- iface = gr.Interface(fn=predict, inputs="number", outputs="number", title="California Housing Price Prediction")
41
- iface.launch()