yongdong commited on
Commit
c6b828a
ยท
1 Parent(s): 5778229

Update Readme.md

Browse files
Files changed (1) hide show
  1. README.md +67 -102
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- title: Robot Task Planning - Llama 3.1 8B
3
  emoji: ๐Ÿค–
4
  colorFrom: blue
5
  colorTo: green
@@ -9,104 +9,69 @@ pinned: false
9
  license: llama3.1
10
  ---
11
 
12
- # ๐Ÿค– Robot Task Planning - Llama 3.1 8B (ZeroGPU)
13
-
14
- This Space demonstrates a fine-tuned version of Meta's **Llama 3.1 8B** model specialized for **robot task planning** using QLoRA (4-bit quantization + LoRA) technique.
15
-
16
- ## ๐Ÿš€ Hardware: ZeroGPU
17
-
18
- This Space uses **ZeroGPU** - dynamic GPU allocation with Nvidia H200:
19
- - **Free** for HuggingFace users
20
- - **Dynamic allocation** - GPU resources allocated on-demand
21
- - **High performance** - H200 offers superior performance
22
- - **60-second duration** per request
23
-
24
- ## ๐ŸŽฏ Purpose
25
-
26
- Convert natural language commands into structured task sequences for construction robots including:
27
- - **Excavators** - Digging, loading, positioning
28
- - **Dump Trucks** - Material transport, loading, unloading
29
- - **Multi-robot Coordination** - Complex task dependencies
30
-
31
- ## ๐Ÿ”— Model
32
-
33
- **Fine-tuned Model**: [YongdongWang/llama-3.1-8b-dart-qlora](https://huggingface.co/YongdongWang/llama-3.1-8b-dart-qlora)
34
-
35
- **Base Model**: [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B)
36
-
37
- ## โœจ Features
38
-
39
- - ๐ŸŽฎ **Interactive Chat Interface** - Real-time robot command processing
40
- - โš™๏ธ **Configurable Generation** - Adjust temperature, top-p, max tokens
41
- - ๐Ÿ“ **Example Commands** - Pre-built scenarios to get started
42
- - ๐Ÿš€ **Optimized Performance** - 4-bit quantization for efficient inference
43
- - ๐Ÿ“Š **Structured Output** - JSON-formatted task sequences
44
- - โšก **ZeroGPU Powered** - Dynamic GPU allocation for free users
45
-
46
- ## ๐Ÿš€ Usage
47
-
48
- 1. **Input**: Natural language robot commands
49
- ```
50
- "Deploy Excavator 1 to Soil Area 1 for excavation"
51
- ```
52
-
53
- 2. **Output**: Structured task sequences
54
- ```json
55
- {
56
- "tasks": [
57
- {
58
- "robot": "Excavator_1",
59
- "action": "move_to",
60
- "target": "Soil_Area_1",
61
- "duration": 30
62
- },
63
- {
64
- "robot": "Excavator_1",
65
- "action": "excavate",
66
- "target": "Soil_Area_1",
67
- "duration": 120
68
- }
69
- ]
70
- }
71
- ```
72
-
73
- ## ๐Ÿ› ๏ธ Technical Details
74
-
75
- - **Architecture**: Llama 3.1 8B + QLoRA adapters
76
- - **Quantization**: 4-bit (NF4) with double quantization
77
- - **Framework**: Transformers + PEFT + BitsAndBytesConfig
78
- - **Hardware**: ZeroGPU (Dynamic Nvidia H200)
79
-
80
- ## โšก Performance Notes
81
-
82
- - **First Generation**: 5-10 seconds (GPU allocation + model loading)
83
- - **Subsequent Generations**: 2-5 seconds per response
84
- - **Memory Usage**: ~8GB VRAM with 4-bit quantization
85
- - **Context Length**: Up to 2048 tokens
86
- - **GPU Duration**: 60 seconds per request
87
-
88
- ## ๐Ÿ“š Example Commands
89
-
90
- Try these robot commands:
91
-
92
- - `"Deploy Excavator 1 to Soil Area 1 for excavation"`
93
- - `"Send Dump Truck 1 to collect material, then unload at storage"`
94
- - `"Coordinate multiple excavators across different areas"`
95
- - `"Create evacuation sequence for all robots from dangerous zone"`
96
-
97
- ## ๐Ÿ”ฌ Research Applications
98
-
99
- This model demonstrates:
100
- - **Natural Language โ†’ Robot Planning** translation
101
- - **Multi-agent Task Coordination**
102
- - **Efficient LLM Fine-tuning** with QLoRA
103
- - **Real-time Robot Command Processing**
104
- - **ZeroGPU Integration** for scalable deployment
105
-
106
- ## ๐Ÿ“„ License
107
-
108
- This project uses Meta's Llama 3.1 license. Please review the license terms before use.
109
-
110
- ## ๐Ÿค Contributing
111
-
112
- For issues, improvements, or questions about the model, please visit the [model repository](https://huggingface.co/YongdongWang/llama-3.1-8b-dart-qlora).
 
1
  ---
2
+ title: "DART-LLM: Dependency-Aware Multi-Robot Task Decomposition and Execution"
3
  emoji: ๐Ÿค–
4
  colorFrom: blue
5
  colorTo: green
 
9
  license: llama3.1
10
  ---
11
 
12
+ <div align="center">
13
+ <h1>DART-LLM: Dependency-Aware Multi-Robot Task Decomposition and Execution using Large Language Models (Spaces)</h1>
14
+ <div class="project-info">
15
+ This project is part of the <a href="https://moonshot-cafe-project.org/en/" target="_blank">Moonshot Cafรฉ Project</a>
16
+ </div>
17
+ <div class="authors">
18
+ <a href="https://researchmap.jp/wangyongdong?lang=en" target="_blank">Yongdong Wang</a><sup class="org-1">1,*</sup>,
19
+ Runze Xiao<sup class="org-1">1</sup>,
20
+ <a href="https://www.robot.t.u-tokyo.ac.jp/~louhi_kasahara/index-e.html" target="_blank">Jun Younes Louhi Kasahara</a><sup class="org-1">1</sup>,
21
+ <a href="https://researchmap.jp/r-yaj?lang=en" target="_blank">Ryosuke Yajima</a><sup class="org-1">1</sup>,
22
+ <a href="http://k-nagatani.org/" target="_blank">Keiji Nagatani</a><sup class="org-1">1</sup><sup class="org-2">, 2</sup>,
23
+ <a href="https://www.robot.t.u-tokyo.ac.jp/~yamashita/" target="_blank">Atsushi Yamashita</a><sup class="org-3">3</sup>,
24
+ <a href="https://www.robot.t.u-tokyo.ac.jp/asamalab/en/members/asama/biography.html" target="_blank">Hajime Asama</a><sup class="org-4">4</sup>
25
+ </div>
26
+ <div class="affiliations">
27
+ <sup class="org-1">1</sup>Graduate School of Engineering, The University of Tokyo<br>
28
+ <sup class="org-2">2</sup>Faculty of Systems and Information Engineering, University of Tsukuba<br>
29
+ <sup class="org-3">3</sup>Graduate School of Frontier Sciences, The University of Tokyo<br>
30
+ <sup class="org-4">4</sup>Tokyo College, The University of Tokyo
31
+ </div>
32
+ <div class="corresponding-author">
33
+ *Corresponding author: <a href="mailto:wangyongdong@robot.t.u-tokyo.ac.jp">[email protected]-tokyo.ac.jp</a>
34
+ </div>
35
+ <div align="center">
36
+ <a href="https://arxiv.org/pdf/2411.09022" target="_blank" rel="noopener noreferrer">
37
+ <img src="https://img.shields.io/badge/arXiv-2411.09022-b31b1b" alt="arXiv Badge">
38
+ </a>
39
+ <a href="https://github.com/wyd0817/QA_LLM_Module" target="_blank" rel="noopener noreferrer">
40
+ <img src="https://img.shields.io/badge/QA_LLM_Module-GitHub-blue" alt="QA LLM Module GitHub Badge">
41
+ </a>
42
+ <a href="https://huggingface.co/datasets/YongdongWang/dart_llm_tasks" target="_blank" rel="noopener noreferrer">
43
+ <img src="https://img.shields.io/badge/Dataset-Hugging_Face-blue" alt="Dataset Badge">
44
+ </a>
45
+ <a href="https://huggingface.co/spaces/YongdongWang/DART-LLM-Llama3.1-8b" target="_blank" rel="noopener noreferrer">
46
+ <img src="https://img.shields.io/badge/Spaces-DART--LLM--Llama3.1--8b-lightgrey" alt="Spaces Badge">
47
+ </a>
48
+ <a href="https://www.youtube.com/watch?v=p3A-yg3yv0Q" target="_blank" rel="noopener noreferrer">
49
+ <img src="https://img.shields.io/badge/Video-YouTube-red" alt="Video Badge">
50
+ </a>
51
+ <a href="https://www.youtube.com/watch?v=T3M94hP8NFQ" target="_blank" rel="noopener noreferrer">
52
+ <img src="https://img.shields.io/badge/Real_Robot-YouTube-orange" alt="Real Robot Badge">
53
+ </a>
54
+ </div>
55
+
56
+ ## Overview
57
+
58
+ This Hugging Face Space hosts DART-LLM, a QLoRA-fine-tuned meta-llama/Llama-3.1-8B model specialized in construction robotics. It demonstrates converting natural language robot commands into structured JSON tasks, supporting detailed multi-robot coordination, spatial reasoning, and action planning.
59
+
60
+ ## Quick Start
61
+
62
+ 1. Enter your robot command in the provided interface.
63
+ 2. Click **Generate Tasks**.
64
+ 3. Review the structured JSON output describing the robot task sequence.
65
+
66
+ ## Citation
67
+
68
+ If you use this work, please cite:
69
+
70
+ ```bibtex
71
+ @article{wang2024dart,
72
+ title={Dart-llm: Dependency-aware multi-robot task decomposition and execution using large language models},
73
+ author={Wang, Yongdong and Xiao, Runze and Kasahara, Jun Younes Louhi and Yajima, Ryosuke and Nagatani, Keiji and Yamashita, Atsushi and Asama, Hajime},
74
+ journal={arXiv preprint arXiv:2411.09022},
75
+ year={2024}
76
+ }
77
+ ```