Spaces:
Sleeping
Sleeping
yongdong
commited on
Commit
ยท
c6b828a
1
Parent(s):
5778229
Update Readme.md
Browse files
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title: Robot Task
|
3 |
emoji: ๐ค
|
4 |
colorFrom: blue
|
5 |
colorTo: green
|
@@ -9,104 +9,69 @@ pinned: false
|
|
9 |
license: llama3.1
|
10 |
---
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
-
|
28 |
-
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
- **Hardware**: ZeroGPU (Dynamic Nvidia H200)
|
79 |
-
|
80 |
-
## โก Performance Notes
|
81 |
-
|
82 |
-
- **First Generation**: 5-10 seconds (GPU allocation + model loading)
|
83 |
-
- **Subsequent Generations**: 2-5 seconds per response
|
84 |
-
- **Memory Usage**: ~8GB VRAM with 4-bit quantization
|
85 |
-
- **Context Length**: Up to 2048 tokens
|
86 |
-
- **GPU Duration**: 60 seconds per request
|
87 |
-
|
88 |
-
## ๐ Example Commands
|
89 |
-
|
90 |
-
Try these robot commands:
|
91 |
-
|
92 |
-
- `"Deploy Excavator 1 to Soil Area 1 for excavation"`
|
93 |
-
- `"Send Dump Truck 1 to collect material, then unload at storage"`
|
94 |
-
- `"Coordinate multiple excavators across different areas"`
|
95 |
-
- `"Create evacuation sequence for all robots from dangerous zone"`
|
96 |
-
|
97 |
-
## ๐ฌ Research Applications
|
98 |
-
|
99 |
-
This model demonstrates:
|
100 |
-
- **Natural Language โ Robot Planning** translation
|
101 |
-
- **Multi-agent Task Coordination**
|
102 |
-
- **Efficient LLM Fine-tuning** with QLoRA
|
103 |
-
- **Real-time Robot Command Processing**
|
104 |
-
- **ZeroGPU Integration** for scalable deployment
|
105 |
-
|
106 |
-
## ๐ License
|
107 |
-
|
108 |
-
This project uses Meta's Llama 3.1 license. Please review the license terms before use.
|
109 |
-
|
110 |
-
## ๐ค Contributing
|
111 |
-
|
112 |
-
For issues, improvements, or questions about the model, please visit the [model repository](https://huggingface.co/YongdongWang/llama-3.1-8b-dart-qlora).
|
|
|
1 |
---
|
2 |
+
title: "DART-LLM: Dependency-Aware Multi-Robot Task Decomposition and Execution"
|
3 |
emoji: ๐ค
|
4 |
colorFrom: blue
|
5 |
colorTo: green
|
|
|
9 |
license: llama3.1
|
10 |
---
|
11 |
|
12 |
+
<div align="center">
|
13 |
+
<h1>DART-LLM: Dependency-Aware Multi-Robot Task Decomposition and Execution using Large Language Models (Spaces)</h1>
|
14 |
+
<div class="project-info">
|
15 |
+
This project is part of the <a href="https://moonshot-cafe-project.org/en/" target="_blank">Moonshot Cafรฉ Project</a>
|
16 |
+
</div>
|
17 |
+
<div class="authors">
|
18 |
+
<a href="https://researchmap.jp/wangyongdong?lang=en" target="_blank">Yongdong Wang</a><sup class="org-1">1,*</sup>,
|
19 |
+
Runze Xiao<sup class="org-1">1</sup>,
|
20 |
+
<a href="https://www.robot.t.u-tokyo.ac.jp/~louhi_kasahara/index-e.html" target="_blank">Jun Younes Louhi Kasahara</a><sup class="org-1">1</sup>,
|
21 |
+
<a href="https://researchmap.jp/r-yaj?lang=en" target="_blank">Ryosuke Yajima</a><sup class="org-1">1</sup>,
|
22 |
+
<a href="http://k-nagatani.org/" target="_blank">Keiji Nagatani</a><sup class="org-1">1</sup><sup class="org-2">, 2</sup>,
|
23 |
+
<a href="https://www.robot.t.u-tokyo.ac.jp/~yamashita/" target="_blank">Atsushi Yamashita</a><sup class="org-3">3</sup>,
|
24 |
+
<a href="https://www.robot.t.u-tokyo.ac.jp/asamalab/en/members/asama/biography.html" target="_blank">Hajime Asama</a><sup class="org-4">4</sup>
|
25 |
+
</div>
|
26 |
+
<div class="affiliations">
|
27 |
+
<sup class="org-1">1</sup>Graduate School of Engineering, The University of Tokyo<br>
|
28 |
+
<sup class="org-2">2</sup>Faculty of Systems and Information Engineering, University of Tsukuba<br>
|
29 |
+
<sup class="org-3">3</sup>Graduate School of Frontier Sciences, The University of Tokyo<br>
|
30 |
+
<sup class="org-4">4</sup>Tokyo College, The University of Tokyo
|
31 |
+
</div>
|
32 |
+
<div class="corresponding-author">
|
33 |
+
*Corresponding author: <a href="mailto:wangyongdong@robot.t.u-tokyo.ac.jp">[email protected]-tokyo.ac.jp</a>
|
34 |
+
</div>
|
35 |
+
<div align="center">
|
36 |
+
<a href="https://arxiv.org/pdf/2411.09022" target="_blank" rel="noopener noreferrer">
|
37 |
+
<img src="https://img.shields.io/badge/arXiv-2411.09022-b31b1b" alt="arXiv Badge">
|
38 |
+
</a>
|
39 |
+
<a href="https://github.com/wyd0817/QA_LLM_Module" target="_blank" rel="noopener noreferrer">
|
40 |
+
<img src="https://img.shields.io/badge/QA_LLM_Module-GitHub-blue" alt="QA LLM Module GitHub Badge">
|
41 |
+
</a>
|
42 |
+
<a href="https://huggingface.co/datasets/YongdongWang/dart_llm_tasks" target="_blank" rel="noopener noreferrer">
|
43 |
+
<img src="https://img.shields.io/badge/Dataset-Hugging_Face-blue" alt="Dataset Badge">
|
44 |
+
</a>
|
45 |
+
<a href="https://huggingface.co/spaces/YongdongWang/DART-LLM-Llama3.1-8b" target="_blank" rel="noopener noreferrer">
|
46 |
+
<img src="https://img.shields.io/badge/Spaces-DART--LLM--Llama3.1--8b-lightgrey" alt="Spaces Badge">
|
47 |
+
</a>
|
48 |
+
<a href="https://www.youtube.com/watch?v=p3A-yg3yv0Q" target="_blank" rel="noopener noreferrer">
|
49 |
+
<img src="https://img.shields.io/badge/Video-YouTube-red" alt="Video Badge">
|
50 |
+
</a>
|
51 |
+
<a href="https://www.youtube.com/watch?v=T3M94hP8NFQ" target="_blank" rel="noopener noreferrer">
|
52 |
+
<img src="https://img.shields.io/badge/Real_Robot-YouTube-orange" alt="Real Robot Badge">
|
53 |
+
</a>
|
54 |
+
</div>
|
55 |
+
|
56 |
+
## Overview
|
57 |
+
|
58 |
+
This Hugging Face Space hosts DART-LLM, a QLoRA-fine-tuned meta-llama/Llama-3.1-8B model specialized in construction robotics. It demonstrates converting natural language robot commands into structured JSON tasks, supporting detailed multi-robot coordination, spatial reasoning, and action planning.
|
59 |
+
|
60 |
+
## Quick Start
|
61 |
+
|
62 |
+
1. Enter your robot command in the provided interface.
|
63 |
+
2. Click **Generate Tasks**.
|
64 |
+
3. Review the structured JSON output describing the robot task sequence.
|
65 |
+
|
66 |
+
## Citation
|
67 |
+
|
68 |
+
If you use this work, please cite:
|
69 |
+
|
70 |
+
```bibtex
|
71 |
+
@article{wang2024dart,
|
72 |
+
title={Dart-llm: Dependency-aware multi-robot task decomposition and execution using large language models},
|
73 |
+
author={Wang, Yongdong and Xiao, Runze and Kasahara, Jun Younes Louhi and Yajima, Ryosuke and Nagatani, Keiji and Yamashita, Atsushi and Asama, Hajime},
|
74 |
+
journal={arXiv preprint arXiv:2411.09022},
|
75 |
+
year={2024}
|
76 |
+
}
|
77 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|