Spaces:
Runtime error
Runtime error
Update Llama 3.1 8B robot planning space with improvements
Browse files
README.md
CHANGED
@@ -13,18 +13,92 @@ hardware: t4-medium
|
|
13 |
|
14 |
# 🤖 Robot Task Planning - Llama 3.1 8B
|
15 |
|
16 |
-
|
17 |
|
18 |
-
##
|
19 |
-
[YongdongWang/llama-3.1-8b-dart-qlora](https://huggingface.co/YongdongWang/llama-3.1-8b-dart-qlora)
|
20 |
|
21 |
-
|
22 |
-
-
|
23 |
-
-
|
24 |
-
-
|
25 |
-
- Optimized with 4-bit quantization
|
26 |
|
27 |
-
##
|
28 |
-
Input robot commands and get structured task sequences for excavators, dump trucks, and other construction robots.
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# 🤖 Robot Task Planning - Llama 3.1 8B
|
15 |
|
16 |
+
This Space demonstrates a fine-tuned version of Meta's **Llama 3.1 8B** model specialized for **robot task planning** using QLoRA (4-bit quantization + LoRA) technique.
|
17 |
|
18 |
+
## 🎯 Purpose
|
|
|
19 |
|
20 |
+
Convert natural language commands into structured task sequences for construction robots including:
|
21 |
+
- **Excavators** - Digging, loading, positioning
|
22 |
+
- **Dump Trucks** - Material transport, loading, unloading
|
23 |
+
- **Multi-robot Coordination** - Complex task dependencies
|
|
|
24 |
|
25 |
+
## 🔗 Model
|
|
|
26 |
|
27 |
+
**Fine-tuned Model**: [YongdongWang/llama-3.1-8b-dart-qlora](https://huggingface.co/YongdongWang/llama-3.1-8b-dart-qlora)
|
28 |
+
|
29 |
+
**Base Model**: [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B)
|
30 |
+
|
31 |
+
## ✨ Features
|
32 |
+
|
33 |
+
- 🎮 **Interactive Chat Interface** - Real-time robot command processing
|
34 |
+
- ⚙️ **Configurable Generation** - Adjust temperature, top-p, max tokens
|
35 |
+
- 📝 **Example Commands** - Pre-built scenarios to get started
|
36 |
+
- 🚀 **Optimized Performance** - 4-bit quantization for efficient inference
|
37 |
+
- 📊 **Structured Output** - JSON-formatted task sequences
|
38 |
+
|
39 |
+
## 🚀 Usage
|
40 |
+
|
41 |
+
1. **Input**: Natural language robot commands
|
42 |
+
```
|
43 |
+
"Deploy Excavator 1 to Soil Area 1 for excavation"
|
44 |
+
```
|
45 |
+
|
46 |
+
2. **Output**: Structured task sequences
|
47 |
+
```json
|
48 |
+
{
|
49 |
+
"tasks": [
|
50 |
+
{
|
51 |
+
"robot": "Excavator_1",
|
52 |
+
"action": "move_to",
|
53 |
+
"target": "Soil_Area_1",
|
54 |
+
"duration": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"robot": "Excavator_1",
|
58 |
+
"action": "excavate",
|
59 |
+
"target": "Soil_Area_1",
|
60 |
+
"duration": 120
|
61 |
+
}
|
62 |
+
]
|
63 |
+
}
|
64 |
+
```
|
65 |
+
|
66 |
+
## 🛠️ Technical Details
|
67 |
+
|
68 |
+
- **Architecture**: Llama 3.1 8B + QLoRA adapters
|
69 |
+
- **Quantization**: 4-bit (NF4) with double quantization
|
70 |
+
- **Framework**: Transformers + PEFT + BitsAndBytesConfig
|
71 |
+
- **Interface**: Gradio 4.44.0
|
72 |
+
- **Hardware**: T4 Medium (16GB VRAM)
|
73 |
+
|
74 |
+
## ⚡ Performance Notes
|
75 |
+
|
76 |
+
- **First Load**: 3-5 minutes (model downloading + loading)
|
77 |
+
- **Subsequent Generations**: ~2-10 seconds per response
|
78 |
+
- **Memory Usage**: ~8GB VRAM with 4-bit quantization
|
79 |
+
- **Context Length**: Up to 2048 tokens
|
80 |
+
|
81 |
+
## 📚 Example Commands
|
82 |
+
|
83 |
+
Try these robot commands:
|
84 |
+
|
85 |
+
- `"Deploy Excavator 1 to Soil Area 1 for excavation"`
|
86 |
+
- `"Send Dump Truck 1 to collect material, then unload at storage"`
|
87 |
+
- `"Coordinate multiple excavators across different areas"`
|
88 |
+
- `"Create evacuation sequence for all robots from dangerous zone"`
|
89 |
+
|
90 |
+
## 🔬 Research Applications
|
91 |
+
|
92 |
+
This model demonstrates:
|
93 |
+
- **Natural Language → Robot Planning** translation
|
94 |
+
- **Multi-agent Task Coordination**
|
95 |
+
- **Efficient LLM Fine-tuning** with QLoRA
|
96 |
+
- **Real-time Robot Command Processing**
|
97 |
+
|
98 |
+
## 📄 License
|
99 |
+
|
100 |
+
This project uses Meta's Llama 3.1 license. Please review the license terms before use.
|
101 |
+
|
102 |
+
## 🤝 Contributing
|
103 |
+
|
104 |
+
For issues, improvements, or questions about the model, please visit the [model repository](https://huggingface.co/YongdongWang/llama-3.1-8b-dart-qlora).
|
app.py
CHANGED
@@ -57,13 +57,13 @@ def load_model():
|
|
57 |
print(f"❌ Model loading failed: {load_error}")
|
58 |
return None, None
|
59 |
|
60 |
-
#
|
61 |
model = None
|
62 |
tokenizer = None
|
63 |
model_loading = False
|
64 |
|
65 |
def initialize_model():
|
66 |
-
"""初始化模型"""
|
67 |
global model, tokenizer, model_loading
|
68 |
|
69 |
if model is not None and tokenizer is not None:
|
@@ -85,7 +85,7 @@ def generate_response(prompt, max_tokens=200, temperature=0.7, top_p=0.9):
|
|
85 |
if model_loading:
|
86 |
return "🔄 Model is loading, please wait a few minutes and try again..."
|
87 |
else:
|
88 |
-
return "❌ Model failed to load. Please check the Space logs."
|
89 |
|
90 |
try:
|
91 |
# 格式化输入
|
@@ -123,7 +123,7 @@ def generate_response(prompt, max_tokens=200, temperature=0.7, top_p=0.9):
|
|
123 |
elif len(response) > len(formatted_prompt):
|
124 |
response = response[len(formatted_prompt):].strip()
|
125 |
|
126 |
-
return response if response else "❌ No response generated. Please try again."
|
127 |
|
128 |
except Exception as generation_error:
|
129 |
return f"❌ Generation Error: {str(generation_error)}"
|
@@ -156,55 +156,112 @@ with gr.Blocks(
|
|
156 |
gr.Markdown("""
|
157 |
# 🤖 Llama 3.1 8B - Robot Task Planning
|
158 |
|
159 |
-
|
|
|
|
|
160 |
|
161 |
**Model**: [YongdongWang/llama-3.1-8b-dart-qlora](https://huggingface.co/YongdongWang/llama-3.1-8b-dart-qlora)
|
162 |
|
163 |
-
⚠️ **
|
164 |
""")
|
165 |
|
166 |
with gr.Row():
|
167 |
with gr.Column(scale=3):
|
168 |
chatbot = gr.Chatbot(
|
169 |
-
label="
|
170 |
height=500,
|
|
|
|
|
|
|
171 |
show_copy_button=True
|
172 |
)
|
173 |
|
174 |
msg = gr.Textbox(
|
175 |
label="Robot Command",
|
176 |
-
placeholder="e.g., 'Deploy Excavator 1 to Soil Area 1'...",
|
177 |
-
lines=2
|
|
|
|
|
|
|
178 |
)
|
179 |
|
180 |
with gr.Row():
|
181 |
-
send_btn = gr.Button("🚀 Generate", variant="primary")
|
182 |
-
clear_btn = gr.Button("🗑️ Clear", variant="secondary")
|
183 |
|
184 |
with gr.Column(scale=1):
|
185 |
-
gr.Markdown("### ⚙️ Settings")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
-
|
188 |
-
|
189 |
-
|
|
|
|
|
190 |
|
191 |
-
#
|
192 |
gr.Examples(
|
193 |
examples=[
|
194 |
["Deploy Excavator 1 to Soil Area 1 for excavation."],
|
195 |
-
["Send Dump Truck 1 to collect material
|
196 |
-
["Move all robots to avoid
|
197 |
-
["
|
198 |
-
["
|
|
|
|
|
|
|
199 |
],
|
200 |
inputs=msg,
|
201 |
-
label="💡
|
202 |
)
|
203 |
|
204 |
# 事件处理
|
205 |
-
msg.submit(
|
206 |
-
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
if __name__ == "__main__":
|
210 |
-
demo.launch(
|
|
|
|
|
|
|
|
|
|
57 |
print(f"❌ Model loading failed: {load_error}")
|
58 |
return None, None
|
59 |
|
60 |
+
# 全局变量存储模型
|
61 |
model = None
|
62 |
tokenizer = None
|
63 |
model_loading = False
|
64 |
|
65 |
def initialize_model():
|
66 |
+
"""初始化模型 - 延迟加载"""
|
67 |
global model, tokenizer, model_loading
|
68 |
|
69 |
if model is not None and tokenizer is not None:
|
|
|
85 |
if model_loading:
|
86 |
return "🔄 Model is loading, please wait a few minutes and try again..."
|
87 |
else:
|
88 |
+
return "❌ Model failed to load. Please check the Space logs or try restarting."
|
89 |
|
90 |
try:
|
91 |
# 格式化输入
|
|
|
123 |
elif len(response) > len(formatted_prompt):
|
124 |
response = response[len(formatted_prompt):].strip()
|
125 |
|
126 |
+
return response if response else "❌ No response generated. Please try again with a different prompt."
|
127 |
|
128 |
except Exception as generation_error:
|
129 |
return f"❌ Generation Error: {str(generation_error)}"
|
|
|
156 |
gr.Markdown("""
|
157 |
# 🤖 Llama 3.1 8B - Robot Task Planning
|
158 |
|
159 |
+
This is a fine-tuned version of Meta's Llama 3.1 8B model specialized for **robot task planning** using QLoRA technique.
|
160 |
+
|
161 |
+
**Capabilities**: Convert natural language robot commands into structured task sequences for excavators, dump trucks, and other construction robots.
|
162 |
|
163 |
**Model**: [YongdongWang/llama-3.1-8b-dart-qlora](https://huggingface.co/YongdongWang/llama-3.1-8b-dart-qlora)
|
164 |
|
165 |
+
⚠️ **Note**: Model loading may take 3-5 minutes on first startup. Please be patient.
|
166 |
""")
|
167 |
|
168 |
with gr.Row():
|
169 |
with gr.Column(scale=3):
|
170 |
chatbot = gr.Chatbot(
|
171 |
+
label="Task Planning Results",
|
172 |
height=500,
|
173 |
+
show_label=True,
|
174 |
+
container=True,
|
175 |
+
bubble_full_width=False,
|
176 |
show_copy_button=True
|
177 |
)
|
178 |
|
179 |
msg = gr.Textbox(
|
180 |
label="Robot Command",
|
181 |
+
placeholder="Enter robot task command (e.g., 'Deploy Excavator 1 to Soil Area 1')...",
|
182 |
+
lines=2,
|
183 |
+
max_lines=5,
|
184 |
+
show_label=True,
|
185 |
+
container=True
|
186 |
)
|
187 |
|
188 |
with gr.Row():
|
189 |
+
send_btn = gr.Button("🚀 Generate Tasks", variant="primary", size="sm")
|
190 |
+
clear_btn = gr.Button("🗑️ Clear", variant="secondary", size="sm")
|
191 |
|
192 |
with gr.Column(scale=1):
|
193 |
+
gr.Markdown("### ⚙️ Generation Settings")
|
194 |
+
|
195 |
+
max_tokens = gr.Slider(
|
196 |
+
minimum=50,
|
197 |
+
maximum=500,
|
198 |
+
value=200,
|
199 |
+
step=10,
|
200 |
+
label="Max Tokens",
|
201 |
+
info="Maximum number of tokens to generate"
|
202 |
+
)
|
203 |
+
|
204 |
+
temperature = gr.Slider(
|
205 |
+
minimum=0.1,
|
206 |
+
maximum=2.0,
|
207 |
+
value=0.7,
|
208 |
+
step=0.1,
|
209 |
+
label="Temperature",
|
210 |
+
info="Controls randomness (lower = more focused)"
|
211 |
+
)
|
212 |
+
|
213 |
+
top_p = gr.Slider(
|
214 |
+
minimum=0.1,
|
215 |
+
maximum=1.0,
|
216 |
+
value=0.9,
|
217 |
+
step=0.05,
|
218 |
+
label="Top-p",
|
219 |
+
info="Nucleus sampling threshold"
|
220 |
+
)
|
221 |
|
222 |
+
gr.Markdown("""
|
223 |
+
### 📊 Model Status
|
224 |
+
The model will load automatically on first use.
|
225 |
+
Loading time: ~3-5 minutes
|
226 |
+
""")
|
227 |
|
228 |
+
# 示例对话
|
229 |
gr.Examples(
|
230 |
examples=[
|
231 |
["Deploy Excavator 1 to Soil Area 1 for excavation."],
|
232 |
+
["Send Dump Truck 1 to collect material from Excavator 1, then unload at storage area."],
|
233 |
+
["Move all robots to avoid Puddle 1 after inspection."],
|
234 |
+
["Deploy multiple excavators to different soil areas simultaneously."],
|
235 |
+
["Coordinate dump trucks to transport materials from excavation site to storage."],
|
236 |
+
["Send robot to inspect rock area, then avoid with all other robots if dangerous."],
|
237 |
+
["Return all robots to start position after completing tasks."],
|
238 |
+
["Create a sequence: excavate, load, transport, unload, repeat."]
|
239 |
],
|
240 |
inputs=msg,
|
241 |
+
label="💡 Example Robot Commands"
|
242 |
)
|
243 |
|
244 |
# 事件处理
|
245 |
+
msg.submit(
|
246 |
+
chat_interface,
|
247 |
+
inputs=[msg, chatbot, max_tokens, temperature, top_p],
|
248 |
+
outputs=[chatbot, msg]
|
249 |
+
)
|
250 |
+
|
251 |
+
send_btn.click(
|
252 |
+
chat_interface,
|
253 |
+
inputs=[msg, chatbot, max_tokens, temperature, top_p],
|
254 |
+
outputs=[chatbot, msg]
|
255 |
+
)
|
256 |
+
|
257 |
+
clear_btn.click(
|
258 |
+
lambda: ([], ""),
|
259 |
+
outputs=[chatbot, msg]
|
260 |
+
)
|
261 |
|
262 |
if __name__ == "__main__":
|
263 |
+
demo.launch(
|
264 |
+
server_name="0.0.0.0",
|
265 |
+
server_port=7860,
|
266 |
+
show_error=True
|
267 |
+
)
|