Yonkani commited on
Commit
252dcd6
·
1 Parent(s): a5be26b

Add application file

Browse files
F1_curve.png ADDED
PR_curve.png ADDED
P_curve.png ADDED
R_curve.png ADDED
app.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import cv2
3
+
4
+ from ultralytics import YOLO
5
+
6
+ #Cargar modelo entrenado
7
+ model = YOLO('best.pt')
8
+
9
+ #Definir funcion que ejecuta la interfaz definida (en este caso es solo una interfaz, pero pueden ser algunas)
10
+ #La interfaz solo recibe una entrada (La imagen ingresada en el cargador de path de imagenes), por lo
11
+ # q ue solo se define un parametro de entrada en la funcion.
12
+ def show_results(loaded_image):
13
+ #Se generan las salidas (detecciones) pidiendo al modelo que prediga a partir de la imagen de entrada
14
+ outputs = model.predict(source=loaded_image)
15
+ results = outputs[0].cpu().numpy()
16
+ #Se carga la imagen usando openCV para poder editarla
17
+ image = cv2.imread(loaded_image)
18
+ #Se recorre cada boundingBox detectado y para cada uno se pinta un rectangulo y se escribe un id.
19
+ for i, det in enumerate(results.boxes.xyxy):
20
+ cv2.rectangle(image,
21
+ (int(det[0]), int(det[1])),
22
+ (int(det[2]), int(det[3])),
23
+ color=(0, 0, 255),
24
+ thickness=2,
25
+ lineType=cv2.LINE_AA
26
+ )
27
+ cv2.putText(image,
28
+ text =f"id:{i}",
29
+ org=(int(det[0]), int(det[1])),
30
+ fontFace =cv2.FONT_HERSHEY_SIMPLEX,
31
+ fontScale=1,
32
+ color=(0,0,255),
33
+ thickness=1,
34
+ lineType=cv2.LINE_AA
35
+ )
36
+ #Se retornan las 2 salidas definidas(imagen y texto): la imagen resultante (image) y un texto indicando cuantos boundingBox se encontraron
37
+ return cv2.cvtColor(image, cv2.COLOR_BGR2RGB), len(results.boxes)
38
+
39
+
40
+ inputs = [gr.components.Image(type="filepath", label="Input Image"),
41
+ ]
42
+ outputs= [gr.components.Image(type="numpy", label="Output Image"),
43
+ gr.Textbox(label="Total:")
44
+ ]
45
+ #examples = [['demo1.png'], ['demo2.jpg'], ['demo3.jpg'], ['demo4.png']]
46
+
47
+ interface = gr.Interface(fn=show_results,
48
+ inputs=inputs,
49
+ outputs=outputs,
50
+ title="Object Detection",
51
+ #En la interfaz se pueden incluir ejemplos de lo que se espera como entrada o entradas. En este caso,
52
+ # la entrada es una imagen por lo que se pueden poner imagenes de ejemplo (deben estar subidas en el repositorio
53
+ # y con el path correctamente referenciado)
54
+ #examples=examples,
55
+ )
56
+ interface.launch()
args.yaml ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: detect
2
+ mode: train
3
+ model: yolov8n.pt
4
+ data: /content/drive/MyDrive/CuyDetector/data.yaml
5
+ epochs: 5
6
+ patience: 50
7
+ batch: 32
8
+ imgsz: 640
9
+ save: true
10
+ save_period: -1
11
+ cache: false
12
+ device: null
13
+ workers: 8
14
+ project: null
15
+ name: yolov8n_testing_01
16
+ exist_ok: false
17
+ pretrained: true
18
+ optimizer: auto
19
+ verbose: true
20
+ seed: 0
21
+ deterministic: true
22
+ single_cls: false
23
+ rect: false
24
+ cos_lr: false
25
+ close_mosaic: 0
26
+ resume: false
27
+ amp: true
28
+ fraction: 1.0
29
+ profile: false
30
+ overlap_mask: true
31
+ mask_ratio: 4
32
+ dropout: 0.0
33
+ val: true
34
+ split: val
35
+ save_json: false
36
+ save_hybrid: false
37
+ conf: null
38
+ iou: 0.7
39
+ max_det: 300
40
+ half: false
41
+ dnn: false
42
+ plots: true
43
+ source: null
44
+ show: false
45
+ save_txt: false
46
+ save_conf: false
47
+ save_crop: false
48
+ show_labels: true
49
+ show_conf: true
50
+ vid_stride: 1
51
+ line_width: null
52
+ visualize: false
53
+ augment: false
54
+ agnostic_nms: false
55
+ classes: null
56
+ retina_masks: false
57
+ boxes: true
58
+ format: torchscript
59
+ keras: false
60
+ optimize: false
61
+ int8: false
62
+ dynamic: false
63
+ simplify: false
64
+ opset: null
65
+ workspace: 4
66
+ nms: false
67
+ lr0: 0.01
68
+ lrf: 0.01
69
+ momentum: 0.937
70
+ weight_decay: 0.0005
71
+ warmup_epochs: 3.0
72
+ warmup_momentum: 0.8
73
+ warmup_bias_lr: 0.1
74
+ box: 7.5
75
+ cls: 0.5
76
+ dfl: 1.5
77
+ pose: 12.0
78
+ kobj: 1.0
79
+ label_smoothing: 0.0
80
+ nbs: 64
81
+ hsv_h: 0.015
82
+ hsv_s: 0.7
83
+ hsv_v: 0.4
84
+ degrees: 0.0
85
+ translate: 0.1
86
+ scale: 0.5
87
+ shear: 0.0
88
+ perspective: 0.0
89
+ flipud: 0.0
90
+ fliplr: 0.5
91
+ mosaic: 1.0
92
+ mixup: 0.0
93
+ copy_paste: 0.0
94
+ cfg: null
95
+ v5loader: false
96
+ tracker: botsort.yaml
97
+ save_dir: runs/detect/yolov8n_testing_01
confusion_matrix.png ADDED
confusion_matrix_normalized.png ADDED
events.out.tfevents.1687581375.5da9fcb9d510.1523.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29a87f0811105bede02c8a35a9b95be286091781d1d1e0ce792e79603a536210
3
+ size 88
labels.jpg ADDED
labels_correlogram.jpg ADDED
requirements.txt ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ultralytics requirements
2
+ # Usage: pip install -r requirements.txt
3
+
4
+ # Base ----------------------------------------
5
+ hydra-core>=1.2.0
6
+ matplotlib>=3.2.2
7
+ numpy>=1.18.5
8
+ opencv-python>=4.1.1
9
+ Pillow>=7.1.2
10
+ PyYAML>=5.3.1
11
+ requests>=2.23.0
12
+ scipy>=1.4.1
13
+ torch>=1.7.0
14
+ torchvision>=0.8.1
15
+ tqdm>=4.64.0
16
+ ultralytics
17
+
18
+ # Logging -------------------------------------
19
+ tensorboard>=2.4.1
20
+ # clearml
21
+ # comet
22
+
23
+ # Plotting ------------------------------------
24
+ pandas>=1.1.4
25
+ seaborn>=0.11.0
26
+
27
+ # Export --------------------------------------
28
+ # coremltools>=6.0 # CoreML export
29
+ # onnx>=1.12.0 # ONNX export
30
+ # onnx-simplifier>=0.4.1 # ONNX simplifier
31
+ # nvidia-pyindex # TensorRT export
32
+ # nvidia-tensorrt # TensorRT export
33
+ # scikit-learn==0.19.2 # CoreML quantization
34
+ # tensorflow>=2.4.1 # TF exports (-cpu, -aarch64, -macos)
35
+ # tensorflowjs>=3.9.0 # TF.js export
36
+ # openvino-dev # OpenVINO export
37
+
38
+ # Extras --------------------------------------
39
+ ipython # interactive notebook
40
+ psutil # system utilization
41
+ thop>=0.1.1 # FLOPs computation
42
+ # albumentations>=1.0.3
43
+ # pycocotools>=2.0.6 # COCO mAP
44
+ # roboflow
45
+
46
+ # HUB -----------------------------------------
47
+ GitPython>=3.1.24
results.csv ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ epoch, train/box_loss, train/cls_loss, train/dfl_loss, metrics/precision(B), metrics/recall(B), metrics/mAP50(B), metrics/mAP50-95(B), val/box_loss, val/cls_loss, val/dfl_loss, lr/pg0, lr/pg1, lr/pg2
2
+ 0, 1.645, 2.6314, 1.9517, 0.00667, 1, 0.19129, 0.11475, 1.0169, 2.8058, 1.6284, 2e-05, 2e-05, 2e-05
3
+ 1, 1.6322, 2.5365, 1.9488, 0.00667, 1, 0.24729, 0.11936, 1.0316, 2.8058, 1.6437, 4.812e-05, 4.812e-05, 4.812e-05
4
+ 2, 1.5943, 2.5872, 1.997, 0.00667, 1, 0.28031, 0.12405, 0.99343, 2.8341, 1.6276, 6.04e-05, 6.04e-05, 6.04e-05
5
+ 3, 1.4867, 2.5266, 1.8333, 0.00667, 1, 0.28265, 0.15697, 1.0849, 2.8533, 1.6092, 5.684e-05, 5.684e-05, 5.684e-05
6
+ 4, 1.4518, 2.4932, 1.8417, 0.00667, 1, 0.31144, 0.17644, 1.2216, 2.8967, 1.6712, 3.744e-05, 3.744e-05, 3.744e-05
results.png ADDED
train_batch0.jpg ADDED
train_batch1.jpg ADDED
train_batch2.jpg ADDED
val_batch0_labels.jpg ADDED
val_batch0_pred.jpg ADDED
weights/best.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9162183dccc0878cca74fde687983e2e265dcd7d484f7d0a43ef838fd04edb26
3
+ size 6241262
weights/last.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d139c476589b6e3c9fe67ac5a866bba1b7e29b389456beb2f01982b3420695e
3
+ size 6241262