from transformers import GPT2Tokenizer, GPT2LMHeadModel import torch # Initialize the tokenizer and model tokenizer = GPT2Tokenizer.from_pretrained("gpt2") model = GPT2LMHeadModel.from_pretrained("gpt2") # Set the model to evaluation mode model.eval() # Prompt text prompt = "face generating code" # Encode the prompt text input_ids = tokenizer.encode(prompt, return_tensors="pt") # Generate text with torch.no_grad(): output = model.generate(input_ids=input_ids, max_length=500) # Decode the generated text generated_text = tokenizer.decode(output[0], skip_special_tokens=True) print(generated_text)