Spaces:
Runtime error
Runtime error
import gradio as gr | |
from speechbrain.inference.ASR import EncoderASR | |
from pydub import AudioSegment | |
import os | |
import numpy as np | |
from scipy.io.wavfile import write | |
import time | |
# Load the ASR model | |
asr_model = EncoderASR.from_hparams( | |
source="YosefA/wave2vec2_amharic_stt", | |
savedir="pretrained_models/asr-wav2vec2-amharic" | |
) | |
# Directory to store converted audio files | |
os.makedirs("temp_audio", exist_ok=True) | |
def transcribe_audio(audio_file): | |
""" | |
Converts the uploaded audio to .wav format, runs transcription, and returns the result. | |
""" | |
# Save the uploaded audio to a temporary location | |
temp_audio_path = "temp_audio/input_audio.wav" | |
# Convert audio to .wav format | |
sound = AudioSegment.from_file(audio_file) | |
sound.export(temp_audio_path, format="wav") | |
# Transcribe the audio | |
transcription = asr_model.transcribe_file(temp_audio_path) | |
# Clean up temporary files (optional) | |
os.remove(temp_audio_path) | |
return transcription | |
def process_audio(audio_data): | |
""" | |
Processes recorded/uploaded audio, saves it, and sends it to the transcribe_audio function. | |
""" | |
transcription = transcribe_audio(audio_data) | |
return transcription | |
# Define the Gradio interface | |
with gr.Blocks() as app: | |
gr.Markdown("### Amharic Speech-to-Text Transcription App") | |
gr.Markdown("Upload or record an audio file in any format, and get its transcription.") | |
with gr.Row(): | |
audio_input = gr.Audio(label="Upload or Record Audio", type="filepath") | |
transcription_output = gr.Textbox(label="Transcription") | |
transcribe_button = gr.Button("Transcribe") | |
transcribe_button.click(process_audio, inputs=audio_input, outputs=transcription_output) | |
# Launch the app | |
if __name__ == "__main__": | |
app.launch() | |