Spaces:
Sleeping
Sleeping
Commit
·
466446e
1
Parent(s):
e9c0f26
add training and visualization scripts and logs
Browse files- Training/env.log +107 -0
- Training/hyperparams.yaml +193 -0
- Training/log.txt +937 -0
- Training/train.py +380 -0
- Training/train2.py +372 -0
- Training/train_log.txt +33 -0
- Training/wer_test.txt +0 -0
- graphs.py +36 -0
Training/env.log
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
SpeechBrain system description
|
2 |
+
==============================
|
3 |
+
Python version:
|
4 |
+
3.9.7 (default, Sep 16 2021, 13:09:58)
|
5 |
+
[GCC 7.5.0]
|
6 |
+
==============================
|
7 |
+
Installed Python packages:
|
8 |
+
aiohttp==3.8.1
|
9 |
+
aiosignal==1.2.0
|
10 |
+
appdirs==1.4.4
|
11 |
+
async-timeout==4.0.2
|
12 |
+
attrs==21.4.0
|
13 |
+
audioread==2.1.9
|
14 |
+
audiosegment==0.23.0
|
15 |
+
azure-core==1.21.1
|
16 |
+
azure-storage-blob==12.9.0
|
17 |
+
bcrypt==3.2.0
|
18 |
+
black==19.10b0
|
19 |
+
certifi==2021.10.8
|
20 |
+
cffi==1.15.0
|
21 |
+
cfgv==3.3.1
|
22 |
+
charset-normalizer==2.0.10
|
23 |
+
click==8.0.3
|
24 |
+
cryptography==36.0.1
|
25 |
+
datasets==1.13.3
|
26 |
+
decorator==5.1.1
|
27 |
+
dill==0.3.4
|
28 |
+
distlib==0.3.4
|
29 |
+
entrypoints==0.3
|
30 |
+
ffmpeg==1.4
|
31 |
+
filelock==3.4.2
|
32 |
+
flake8==3.7.9
|
33 |
+
frozenlist==1.3.0
|
34 |
+
fsspec==2022.2.0
|
35 |
+
huggingface-hub==0.5.1
|
36 |
+
HyperPyYAML==1.0.1
|
37 |
+
identify==2.4.4
|
38 |
+
idna==3.3
|
39 |
+
isodate==0.6.1
|
40 |
+
joblib==1.1.0
|
41 |
+
librosa==0.8.1
|
42 |
+
llvmlite==0.38.0
|
43 |
+
mccabe==0.6.1
|
44 |
+
more-itertools==8.12.0
|
45 |
+
msrest==0.6.21
|
46 |
+
multidict==6.0.2
|
47 |
+
multiprocess==0.70.12.2
|
48 |
+
mutagen==1.45.1
|
49 |
+
nodeenv==1.6.0
|
50 |
+
numba==0.55.0
|
51 |
+
numpy==1.21.5
|
52 |
+
oauthlib==3.1.1
|
53 |
+
packaging==21.3
|
54 |
+
pandas==1.3.5
|
55 |
+
paramiko==2.10.3
|
56 |
+
pathspec==0.9.0
|
57 |
+
platformdirs==2.4.1
|
58 |
+
pluggy==0.13.1
|
59 |
+
pooch==1.5.2
|
60 |
+
pre-commit==2.17.0
|
61 |
+
py==1.11.0
|
62 |
+
pyarrow==7.0.0
|
63 |
+
pycodestyle==2.5.0
|
64 |
+
pycparser==2.21
|
65 |
+
pydub==0.25.1
|
66 |
+
pyflakes==2.1.1
|
67 |
+
PyNaCl==1.5.0
|
68 |
+
pyparsing==3.0.6
|
69 |
+
pytest==5.4.1
|
70 |
+
python-dateutil==2.8.2
|
71 |
+
pytz==2021.3
|
72 |
+
PyYAML==6.0
|
73 |
+
regex==2022.1.18
|
74 |
+
requests==2.27.1
|
75 |
+
requests-oauthlib==1.3.0
|
76 |
+
resampy==0.2.2
|
77 |
+
ruamel.yaml==0.17.21
|
78 |
+
ruamel.yaml.clib==0.2.6
|
79 |
+
sacremoses==0.0.53
|
80 |
+
scikit-learn==1.0.2
|
81 |
+
scipy==1.7.3
|
82 |
+
scp==0.14.4
|
83 |
+
sentencepiece==0.1.96
|
84 |
+
six==1.16.0
|
85 |
+
SoundFile==0.10.3.post1
|
86 |
+
speechbrain==0.5.11
|
87 |
+
threadpoolctl==3.0.0
|
88 |
+
tokenizers==0.12.1
|
89 |
+
toml==0.10.2
|
90 |
+
torch==1.11.0
|
91 |
+
torchaudio==0.11.0
|
92 |
+
tqdm==4.62.3
|
93 |
+
transformers==4.18.0
|
94 |
+
typed-ast==1.5.1
|
95 |
+
typing_extensions==4.0.1
|
96 |
+
urllib3==1.26.8
|
97 |
+
virtualenv==20.13.0
|
98 |
+
wcwidth==0.2.5
|
99 |
+
webrtcvad==2.0.10
|
100 |
+
xxhash==3.0.0
|
101 |
+
yamllint==1.23.0
|
102 |
+
yarl==1.7.2
|
103 |
+
youtube-dl==2021.12.17
|
104 |
+
==============================
|
105 |
+
Could not get git revision==============================
|
106 |
+
Cuda version:
|
107 |
+
10.2
|
Training/hyperparams.yaml
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generated 2022-05-27 from:
|
2 |
+
# /data/n.abdoumohamed/dvoice-africa/speechbrain/recipes/DVoice/ASR/CTC/hparams/train_amharic.yaml
|
3 |
+
# yamllint disable
|
4 |
+
# ################################
|
5 |
+
# Model: wav2vec2 + DNN + CTC
|
6 |
+
# Augmentation: SpecAugment
|
7 |
+
# Authors: Titouan Parcollet 2021
|
8 |
+
# ################################
|
9 |
+
|
10 |
+
# Seed needs to be set at top of yaml, before objects with parameters are made
|
11 |
+
seed: 1249
|
12 |
+
__set_seed: !!python/object/apply:torch.manual_see
|
13 |
+
output_folder: results/wav2vec2_ctc_AMHARIC/1249
|
14 |
+
wer_file: results/wav2vec2_ctc_AMHARIC/1249/wer.txt
|
15 |
+
save_folder: results/wav2vec2_ctc_AMHARIC/1249/save
|
16 |
+
train_log: results/wav2vec2_ctc_AMHARIC/1249/train_log.txt
|
17 |
+
|
18 |
+
# URL for the biggest LeBenchmark wav2vec french.
|
19 |
+
wav2vec2_hub: facebook/wav2vec2-large-xlsr-53
|
20 |
+
|
21 |
+
# Data files
|
22 |
+
data_folder: ASR/AMHARIC/data # e.g, /localscratch/cv-corpus-5.1-2020-06-22/fr
|
23 |
+
train_csv_file: ASR/AMHARIC/data/train.csv # Standard CommonVoice .tsv files
|
24 |
+
dev_csv_file: ASR/AMHARIC/data/dev.csv # Standard CommonVoice .tsv files
|
25 |
+
test_csv_file: ASR/AMHARIC/data/test.csv # Standard CommonVoice .tsv files
|
26 |
+
accented_letters: true
|
27 |
+
language: amharic
|
28 |
+
train_csv: results/wav2vec2_ctc_AMHARIC/save/train.csv
|
29 |
+
valid_csv: results/wav2vec2_ctc_AMHARIC/save/dev.csv
|
30 |
+
test_csv: results/wav2vec2_ctc_AMHARIC/save/test.csv
|
31 |
+
skip_prep: false # Skip data preparation
|
32 |
+
data_augmentation: false # Skip data augmentation
|
33 |
+
|
34 |
+
# We remove utterance slonger than 10s in the train/dev/test sets as
|
35 |
+
# longer sentences certainly correspond to "open microphones".
|
36 |
+
avoid_if_longer_than: 15.0
|
37 |
+
|
38 |
+
# Training parameters
|
39 |
+
number_of_epochs: 30
|
40 |
+
number_of_ctc_epochs: 15
|
41 |
+
lr: 1.0
|
42 |
+
lr_wav2vec: 0.0001
|
43 |
+
ctc_weight: 0.3
|
44 |
+
sorting: ascending
|
45 |
+
auto_mix_prec: false
|
46 |
+
sample_rate: 16000
|
47 |
+
ckpt_interval_minutes: 30 # save checkpoint every N min
|
48 |
+
|
49 |
+
# With data_parallel batch_size is split into N jobs
|
50 |
+
# With DDP batch_size is multiplied by N jobs
|
51 |
+
# Must be 6 per GPU to fit 16GB of VRAM
|
52 |
+
batch_size: 4
|
53 |
+
test_batch_size: 4
|
54 |
+
|
55 |
+
dataloader_options:
|
56 |
+
batch_size: 4
|
57 |
+
num_workers: 2
|
58 |
+
test_dataloader_options:
|
59 |
+
batch_size: 4
|
60 |
+
num_workers: 2
|
61 |
+
|
62 |
+
# BPE parameters
|
63 |
+
token_type: char # ["unigram", "bpe", "char"]
|
64 |
+
character_coverage: 1.0
|
65 |
+
|
66 |
+
# Model parameters
|
67 |
+
activation: !name:torch.nn.LeakyReLU
|
68 |
+
wav2vec_output_dim: 1024
|
69 |
+
dnn_neurons: 1024
|
70 |
+
freeze_wav2vec: false
|
71 |
+
|
72 |
+
# Outputs
|
73 |
+
output_neurons: 224 # BPE size, index(blank/eos/bos) = 0
|
74 |
+
|
75 |
+
# Decoding parameters
|
76 |
+
# Be sure that the bos and eos index match with the BPEs ones
|
77 |
+
blank_index: 0
|
78 |
+
bos_index: 1
|
79 |
+
eos_index: 2
|
80 |
+
min_decode_ratio: 0.0
|
81 |
+
max_decode_ratio: 1.0
|
82 |
+
beam_size: 80
|
83 |
+
eos_threshold: 1.5
|
84 |
+
using_max_attn_shift: true
|
85 |
+
max_attn_shift: 140
|
86 |
+
ctc_weight_decode: 0.0
|
87 |
+
temperature: 1.50
|
88 |
+
|
89 |
+
#
|
90 |
+
# Functions and classes
|
91 |
+
#
|
92 |
+
epoch_counter: &id007 !new:speechbrain.utils.epoch_loop.EpochCounter
|
93 |
+
|
94 |
+
limit: 30
|
95 |
+
|
96 |
+
augmentation: !new:speechbrain.lobes.augment.TimeDomainSpecAugment
|
97 |
+
sample_rate: 16000
|
98 |
+
speeds: [95, 100, 105]
|
99 |
+
|
100 |
+
enc: &id002 !new:speechbrain.nnet.containers.Sequential
|
101 |
+
input_shape: [null, null, 1024]
|
102 |
+
linear1: !name:speechbrain.nnet.linear.Linear
|
103 |
+
n_neurons: 1024
|
104 |
+
bias: true
|
105 |
+
bn1: !name:speechbrain.nnet.normalization.BatchNorm1d
|
106 |
+
activation: !new:torch.nn.LeakyReLU
|
107 |
+
drop: !new:torch.nn.Dropout
|
108 |
+
p: 0.15
|
109 |
+
linear2: !name:speechbrain.nnet.linear.Linear
|
110 |
+
n_neurons: 1024
|
111 |
+
bias: true
|
112 |
+
bn2: !name:speechbrain.nnet.normalization.BatchNorm1d
|
113 |
+
activation2: !new:torch.nn.LeakyReLU
|
114 |
+
drop2: !new:torch.nn.Dropout
|
115 |
+
p: 0.15
|
116 |
+
linear3: !name:speechbrain.nnet.linear.Linear
|
117 |
+
n_neurons: 1024
|
118 |
+
bias: true
|
119 |
+
bn3: !name:speechbrain.nnet.normalization.BatchNorm1d
|
120 |
+
activation3: !new:torch.nn.LeakyReLU
|
121 |
+
|
122 |
+
wav2vec2: &id001 !new:speechbrain.lobes.models.huggingface_wav2vec.HuggingFaceWav2Vec2
|
123 |
+
source: facebook/wav2vec2-large-xlsr-53
|
124 |
+
output_norm: true
|
125 |
+
freeze: false
|
126 |
+
save_path: results/wav2vec2_ctc_AMHARIC/1249/save/wav2vec2_checkpoint
|
127 |
+
|
128 |
+
#####
|
129 |
+
# Uncomment this block if you prefer to use a Fairseq pretrained model instead
|
130 |
+
# of a HuggingFace one. Here, we provide an URL that is obtained from the
|
131 |
+
# Fairseq github for the multilingual XLSR.
|
132 |
+
#
|
133 |
+
#wav2vec2_url: https://dl.fbaipublicfiles.com/fairseq/wav2vec/xlsr_53_56k.pt
|
134 |
+
#wav2vec2: !new:speechbrain.lobes.models.fairseq_wav2vec.FairseqWav2Vec2
|
135 |
+
# pretrained_path: !ref <wav2vec2_url>
|
136 |
+
# output_norm: True
|
137 |
+
# freeze: False
|
138 |
+
# save_path: !ref <save_folder>/wav2vec2_checkpoint/model.pt
|
139 |
+
#####
|
140 |
+
|
141 |
+
|
142 |
+
ctc_lin: &id003 !new:speechbrain.nnet.linear.Linear
|
143 |
+
|
144 |
+
input_size: 1024
|
145 |
+
n_neurons: 224
|
146 |
+
|
147 |
+
log_softmax: !new:speechbrain.nnet.activations.Softmax
|
148 |
+
apply_log: true
|
149 |
+
|
150 |
+
ctc_cost: !name:speechbrain.nnet.losses.ctc_loss
|
151 |
+
blank_index: 0
|
152 |
+
|
153 |
+
modules:
|
154 |
+
wav2vec2: *id001
|
155 |
+
enc: *id002
|
156 |
+
ctc_lin: *id003
|
157 |
+
model: &id004 !new:torch.nn.ModuleList
|
158 |
+
- [*id002, *id003]
|
159 |
+
model_opt_class: !name:torch.optim.Adadelta
|
160 |
+
lr: 1.0
|
161 |
+
rho: 0.95
|
162 |
+
eps: 1.e-8
|
163 |
+
|
164 |
+
wav2vec_opt_class: !name:torch.optim.Adam
|
165 |
+
lr: 0.0001
|
166 |
+
|
167 |
+
lr_annealing_model: &id005 !new:speechbrain.nnet.schedulers.NewBobScheduler
|
168 |
+
initial_value: 1.0
|
169 |
+
improvement_threshold: 0.0025
|
170 |
+
annealing_factor: 0.8
|
171 |
+
patient: 0
|
172 |
+
|
173 |
+
lr_annealing_wav2vec: &id006 !new:speechbrain.nnet.schedulers.NewBobScheduler
|
174 |
+
initial_value: 0.0001
|
175 |
+
improvement_threshold: 0.0025
|
176 |
+
annealing_factor: 0.9
|
177 |
+
patient: 0
|
178 |
+
|
179 |
+
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
|
180 |
+
checkpoints_dir: results/wav2vec2_ctc_AMHARIC/1249/save
|
181 |
+
recoverables:
|
182 |
+
wav2vec2: *id001
|
183 |
+
model: *id004
|
184 |
+
scheduler_model: *id005
|
185 |
+
scheduler_wav2vec: *id006
|
186 |
+
counter: *id007
|
187 |
+
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
|
188 |
+
save_file: results/wav2vec2_ctc_AMHARIC/1249/train_log.txt
|
189 |
+
|
190 |
+
error_rate_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
|
191 |
+
|
192 |
+
cer_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
|
193 |
+
split_tokens: true
|
Training/log.txt
ADDED
@@ -0,0 +1,937 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2022-04-05 14:25:26,074 - speechbrain.core - INFO - Beginning experiment!
|
2 |
+
2022-04-05 14:25:26,075 - speechbrain.core - INFO - Experiment folder: results/wav2vec2_ctc_AMHARIC/1249
|
3 |
+
2022-04-05 14:25:26,762 - speechbrain.utils.superpowers - DEBUG - aiohttp==3.8.1
|
4 |
+
aiosignal==1.2.0
|
5 |
+
appdirs==1.4.4
|
6 |
+
async-timeout==4.0.2
|
7 |
+
attrs==21.4.0
|
8 |
+
audioread==2.1.9
|
9 |
+
azure-core==1.21.1
|
10 |
+
azure-storage-blob==12.9.0
|
11 |
+
bcrypt==3.2.0
|
12 |
+
black==19.10b0
|
13 |
+
certifi==2021.10.8
|
14 |
+
cffi==1.15.0
|
15 |
+
cfgv==3.3.1
|
16 |
+
charset-normalizer==2.0.10
|
17 |
+
click==8.0.3
|
18 |
+
cryptography==36.0.1
|
19 |
+
datasets==1.13.3
|
20 |
+
decorator==5.1.1
|
21 |
+
dill==0.3.4
|
22 |
+
distlib==0.3.4
|
23 |
+
entrypoints==0.3
|
24 |
+
ffmpeg==1.4
|
25 |
+
filelock==3.4.2
|
26 |
+
flake8==3.7.9
|
27 |
+
frozenlist==1.3.0
|
28 |
+
fsspec==2022.2.0
|
29 |
+
huggingface-hub==0.2.1
|
30 |
+
HyperPyYAML==1.0.0
|
31 |
+
identify==2.4.4
|
32 |
+
idna==3.3
|
33 |
+
isodate==0.6.1
|
34 |
+
joblib==1.1.0
|
35 |
+
librosa==0.8.1
|
36 |
+
llvmlite==0.38.0
|
37 |
+
mccabe==0.6.1
|
38 |
+
more-itertools==8.12.0
|
39 |
+
msrest==0.6.21
|
40 |
+
multidict==6.0.2
|
41 |
+
multiprocess==0.70.12.2
|
42 |
+
mutagen==1.45.1
|
43 |
+
nodeenv==1.6.0
|
44 |
+
numba==0.55.0
|
45 |
+
numpy==1.21.5
|
46 |
+
oauthlib==3.1.1
|
47 |
+
packaging==21.3
|
48 |
+
pandas==1.3.5
|
49 |
+
paramiko==2.10.3
|
50 |
+
pathspec==0.9.0
|
51 |
+
platformdirs==2.4.1
|
52 |
+
pluggy==0.13.1
|
53 |
+
pooch==1.5.2
|
54 |
+
pre-commit==2.17.0
|
55 |
+
py==1.11.0
|
56 |
+
pyarrow==7.0.0
|
57 |
+
pycodestyle==2.5.0
|
58 |
+
pycparser==2.21
|
59 |
+
pyflakes==2.1.1
|
60 |
+
PyNaCl==1.5.0
|
61 |
+
pyparsing==3.0.6
|
62 |
+
pytest==5.4.1
|
63 |
+
python-dateutil==2.8.2
|
64 |
+
pytz==2021.3
|
65 |
+
PyYAML==6.0
|
66 |
+
regex==2022.1.18
|
67 |
+
requests==2.27.1
|
68 |
+
requests-oauthlib==1.3.0
|
69 |
+
resampy==0.2.2
|
70 |
+
ruamel.yaml==0.17.20
|
71 |
+
ruamel.yaml.clib==0.2.6
|
72 |
+
sacremoses==0.0.47
|
73 |
+
scikit-learn==1.0.2
|
74 |
+
scipy==1.7.3
|
75 |
+
scp==0.14.4
|
76 |
+
sentencepiece==0.1.96
|
77 |
+
six==1.16.0
|
78 |
+
SoundFile==0.10.3.post1
|
79 |
+
threadpoolctl==3.0.0
|
80 |
+
tokenizers==0.10.3
|
81 |
+
toml==0.10.2
|
82 |
+
torch==1.10.1
|
83 |
+
torchaudio==0.10.1
|
84 |
+
tqdm==4.62.3
|
85 |
+
transformers==4.13.0
|
86 |
+
typed-ast==1.5.1
|
87 |
+
typing_extensions==4.0.1
|
88 |
+
urllib3==1.26.8
|
89 |
+
virtualenv==20.13.0
|
90 |
+
wcwidth==0.2.5
|
91 |
+
xxhash==3.0.0
|
92 |
+
yamllint==1.23.0
|
93 |
+
yarl==1.7.2
|
94 |
+
|
95 |
+
|
96 |
+
2022-04-05 14:25:26,922 - dvoice_prepare - INFO - Preparing CSV files for 7612 samples ...
|
97 |
+
2022-04-05 14:25:26,922 - dvoice_prepare - INFO - Creating csv lists in results/wav2vec2_ctc_AMHARIC/1249/save/train.csv ...
|
98 |
+
2022-04-05 14:25:27,322 - dvoice_prepare - INFO - results/wav2vec2_ctc_AMHARIC/1249/save/train.csv successfully created!
|
99 |
+
2022-04-05 14:25:27,322 - dvoice_prepare - INFO - Number of samples: 7612
|
100 |
+
2022-04-05 14:25:27,322 - dvoice_prepare - INFO - Total duration: 14.05 Hours
|
101 |
+
2022-04-05 14:25:27,382 - dvoice_prepare - INFO - Preparing CSV files for 1631 samples ...
|
102 |
+
2022-04-05 14:25:27,382 - dvoice_prepare - INFO - Creating csv lists in results/wav2vec2_ctc_AMHARIC/1249/save/dev.csv ...
|
103 |
+
2022-04-05 14:25:27,434 - dvoice_prepare - INFO - results/wav2vec2_ctc_AMHARIC/1249/save/dev.csv successfully created!
|
104 |
+
2022-04-05 14:25:27,435 - dvoice_prepare - INFO - Number of samples: 1631
|
105 |
+
2022-04-05 14:25:27,435 - dvoice_prepare - INFO - Total duration: 2.95 Hours
|
106 |
+
2022-04-05 14:25:27,477 - dvoice_prepare - INFO - Preparing CSV files for 1632 samples ...
|
107 |
+
2022-04-05 14:25:27,477 - dvoice_prepare - INFO - Creating csv lists in results/wav2vec2_ctc_AMHARIC/1249/save/test.csv ...
|
108 |
+
2022-04-05 14:25:27,546 - dvoice_prepare - INFO - results/wav2vec2_ctc_AMHARIC/1249/save/test.csv successfully created!
|
109 |
+
2022-04-05 14:25:27,546 - dvoice_prepare - INFO - Number of samples: 1632
|
110 |
+
2022-04-05 14:25:27,546 - dvoice_prepare - INFO - Total duration: 3.03 Hours
|
111 |
+
2022-04-05 14:25:27,552 - speechbrain.tokenizers.SentencePiece - INFO - Train tokenizer with type:char
|
112 |
+
2022-04-05 14:25:27,557 - speechbrain.tokenizers.SentencePiece - INFO - Extract wrd sequences from:results/wav2vec2_ctc_AMHARIC/1249/save/train.csv
|
113 |
+
2022-04-05 14:25:27,707 - speechbrain.tokenizers.SentencePiece - INFO - Text file created at: results/wav2vec2_ctc_AMHARIC/1249/save/train.txt
|
114 |
+
2022-04-05 14:25:27,870 - speechbrain.tokenizers.SentencePiece - INFO - ==== Loading Tokenizer ===
|
115 |
+
2022-04-05 14:25:27,870 - speechbrain.tokenizers.SentencePiece - INFO - Tokenizer path: results/wav2vec2_ctc_AMHARIC/1249/save/224_char.model
|
116 |
+
2022-04-05 14:25:27,870 - speechbrain.tokenizers.SentencePiece - INFO - Tokenizer vocab_size: 224
|
117 |
+
2022-04-05 14:25:27,870 - speechbrain.tokenizers.SentencePiece - INFO - Tokenizer type: char
|
118 |
+
2022-04-05 14:25:27,990 - speechbrain.core - INFO - Info: auto_mix_prec arg from hparam file is used
|
119 |
+
2022-04-05 14:25:27,991 - speechbrain.core - INFO - Info: ckpt_interval_minutes arg from hparam file is used
|
120 |
+
2022-04-05 14:25:30,936 - speechbrain.core - INFO - 318.8M trainable parameters in ASR
|
121 |
+
2022-04-05 14:25:30,940 - speechbrain.utils.checkpoints - INFO - Would load a checkpoint here, but none found yet.
|
122 |
+
2022-04-05 14:25:30,940 - speechbrain.utils.epoch_loop - INFO - Going into epoch 1
|
123 |
+
2022-04-05 14:37:08,995 - speechbrain.core - ERROR - Exception:
|
124 |
+
Traceback (most recent call last):
|
125 |
+
File "/data/n.abdoumohamed/DVoice/speechbrain/recipes/DVoice/ASR/CTC/train2.py", line 366, in <module>
|
126 |
+
asr_brain.fit(
|
127 |
+
File "/data/n.abdoumohamed/DVoice/speechbrain/speechbrain/core.py", line 1034, in fit
|
128 |
+
loss = self.fit_batch(batch)
|
129 |
+
File "/data/n.abdoumohamed/DVoice/speechbrain/recipes/DVoice/ASR/CTC/train2.py", line 120, in fit_batch
|
130 |
+
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
|
131 |
+
File "/data/n.abdoumohamed/DVoice/speechbrain/recipes/DVoice/ASR/CTC/train2.py", line 61, in compute_forward
|
132 |
+
feats = self.modules.wav2vec2(wavs)
|
133 |
+
File "/home/n.abdoumohamed/.conda/envs/speechbrain/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
|
134 |
+
return forward_call(*input, **kwargs)
|
135 |
+
File "/data/n.abdoumohamed/DVoice/speechbrain/speechbrain/lobes/models/huggingface_wav2vec.py", line 254, in forward
|
136 |
+
return self.extract_features(wav)
|
137 |
+
File "/data/n.abdoumohamed/DVoice/speechbrain/speechbrain/lobes/models/huggingface_wav2vec.py", line 269, in extract_features
|
138 |
+
out = self.model(wav)[0]
|
139 |
+
File "/home/n.abdoumohamed/.conda/envs/speechbrain/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
|
140 |
+
return forward_call(*input, **kwargs)
|
141 |
+
File "/home/n.abdoumohamed/.conda/envs/speechbrain/lib/python3.9/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py", line 1253, in forward
|
142 |
+
encoder_outputs = self.encoder(
|
143 |
+
File "/home/n.abdoumohamed/.conda/envs/speechbrain/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
|
144 |
+
return forward_call(*input, **kwargs)
|
145 |
+
File "/home/n.abdoumohamed/.conda/envs/speechbrain/lib/python3.9/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py", line 846, in forward
|
146 |
+
layer_outputs = layer(
|
147 |
+
File "/home/n.abdoumohamed/.conda/envs/speechbrain/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
|
148 |
+
return forward_call(*input, **kwargs)
|
149 |
+
File "/home/n.abdoumohamed/.conda/envs/speechbrain/lib/python3.9/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py", line 687, in forward
|
150 |
+
hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states))
|
151 |
+
File "/home/n.abdoumohamed/.conda/envs/speechbrain/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
|
152 |
+
return forward_call(*input, **kwargs)
|
153 |
+
File "/home/n.abdoumohamed/.conda/envs/speechbrain/lib/python3.9/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py", line 622, in forward
|
154 |
+
hidden_states = self.intermediate_dense(hidden_states)
|
155 |
+
File "/home/n.abdoumohamed/.conda/envs/speechbrain/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
|
156 |
+
return forward_call(*input, **kwargs)
|
157 |
+
File "/home/n.abdoumohamed/.conda/envs/speechbrain/lib/python3.9/site-packages/torch/nn/modules/linear.py", line 103, in forward
|
158 |
+
return F.linear(input, self.weight, self.bias)
|
159 |
+
File "/home/n.abdoumohamed/.conda/envs/speechbrain/lib/python3.9/site-packages/torch/nn/functional.py", line 1848, in linear
|
160 |
+
return torch._C._nn.linear(input, weight, bias)
|
161 |
+
RuntimeError: CUDA out of memory. Tried to allocate 24.00 MiB (GPU 0; 11.91 GiB total capacity; 10.77 GiB already allocated; 25.25 MiB free; 10.94 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
162 |
+
2022-04-05 21:06:45,197 - speechbrain.core - INFO - Beginning experiment!
|
163 |
+
2022-04-05 21:06:45,198 - speechbrain.core - INFO - Experiment folder: results/wav2vec2_ctc_AMHARIC/1249
|
164 |
+
2022-04-05 21:06:45,836 - speechbrain.utils.superpowers - DEBUG - aiohttp==3.8.1
|
165 |
+
aiosignal==1.2.0
|
166 |
+
appdirs==1.4.4
|
167 |
+
async-timeout==4.0.2
|
168 |
+
attrs==21.4.0
|
169 |
+
audioread==2.1.9
|
170 |
+
azure-core==1.21.1
|
171 |
+
azure-storage-blob==12.9.0
|
172 |
+
bcrypt==3.2.0
|
173 |
+
black==19.10b0
|
174 |
+
certifi==2021.10.8
|
175 |
+
cffi==1.15.0
|
176 |
+
cfgv==3.3.1
|
177 |
+
charset-normalizer==2.0.10
|
178 |
+
click==8.0.3
|
179 |
+
cryptography==36.0.1
|
180 |
+
datasets==1.13.3
|
181 |
+
decorator==5.1.1
|
182 |
+
dill==0.3.4
|
183 |
+
distlib==0.3.4
|
184 |
+
entrypoints==0.3
|
185 |
+
ffmpeg==1.4
|
186 |
+
filelock==3.4.2
|
187 |
+
flake8==3.7.9
|
188 |
+
frozenlist==1.3.0
|
189 |
+
fsspec==2022.2.0
|
190 |
+
huggingface-hub==0.2.1
|
191 |
+
HyperPyYAML==1.0.0
|
192 |
+
identify==2.4.4
|
193 |
+
idna==3.3
|
194 |
+
isodate==0.6.1
|
195 |
+
joblib==1.1.0
|
196 |
+
librosa==0.8.1
|
197 |
+
llvmlite==0.38.0
|
198 |
+
mccabe==0.6.1
|
199 |
+
more-itertools==8.12.0
|
200 |
+
msrest==0.6.21
|
201 |
+
multidict==6.0.2
|
202 |
+
multiprocess==0.70.12.2
|
203 |
+
mutagen==1.45.1
|
204 |
+
nodeenv==1.6.0
|
205 |
+
numba==0.55.0
|
206 |
+
numpy==1.21.5
|
207 |
+
oauthlib==3.1.1
|
208 |
+
packaging==21.3
|
209 |
+
pandas==1.3.5
|
210 |
+
paramiko==2.10.3
|
211 |
+
pathspec==0.9.0
|
212 |
+
platformdirs==2.4.1
|
213 |
+
pluggy==0.13.1
|
214 |
+
pooch==1.5.2
|
215 |
+
pre-commit==2.17.0
|
216 |
+
py==1.11.0
|
217 |
+
pyarrow==7.0.0
|
218 |
+
pycodestyle==2.5.0
|
219 |
+
pycparser==2.21
|
220 |
+
pyflakes==2.1.1
|
221 |
+
PyNaCl==1.5.0
|
222 |
+
pyparsing==3.0.6
|
223 |
+
pytest==5.4.1
|
224 |
+
python-dateutil==2.8.2
|
225 |
+
pytz==2021.3
|
226 |
+
PyYAML==6.0
|
227 |
+
regex==2022.1.18
|
228 |
+
requests==2.27.1
|
229 |
+
requests-oauthlib==1.3.0
|
230 |
+
resampy==0.2.2
|
231 |
+
ruamel.yaml==0.17.20
|
232 |
+
ruamel.yaml.clib==0.2.6
|
233 |
+
sacremoses==0.0.47
|
234 |
+
scikit-learn==1.0.2
|
235 |
+
scipy==1.7.3
|
236 |
+
scp==0.14.4
|
237 |
+
sentencepiece==0.1.96
|
238 |
+
six==1.16.0
|
239 |
+
SoundFile==0.10.3.post1
|
240 |
+
threadpoolctl==3.0.0
|
241 |
+
tokenizers==0.10.3
|
242 |
+
toml==0.10.2
|
243 |
+
torch==1.10.1
|
244 |
+
torchaudio==0.10.1
|
245 |
+
tqdm==4.62.3
|
246 |
+
transformers==4.13.0
|
247 |
+
typed-ast==1.5.1
|
248 |
+
typing_extensions==4.0.1
|
249 |
+
urllib3==1.26.8
|
250 |
+
virtualenv==20.13.0
|
251 |
+
wcwidth==0.2.5
|
252 |
+
xxhash==3.0.0
|
253 |
+
yamllint==1.23.0
|
254 |
+
yarl==1.7.2
|
255 |
+
|
256 |
+
|
257 |
+
2022-04-05 21:06:46,007 - dvoice_prepare - INFO - results/wav2vec2_ctc_AMHARIC/1249/save/train.csv already exists, skipping data preparation!
|
258 |
+
2022-04-05 21:06:46,007 - dvoice_prepare - INFO - results/wav2vec2_ctc_AMHARIC/1249/save/dev.csv already exists, skipping data preparation!
|
259 |
+
2022-04-05 21:06:46,007 - dvoice_prepare - INFO - results/wav2vec2_ctc_AMHARIC/1249/save/test.csv already exists, skipping data preparation!
|
260 |
+
2022-04-05 21:06:46,007 - speechbrain.tokenizers.SentencePiece - INFO - Tokenizer is already trained.
|
261 |
+
2022-04-05 21:06:46,007 - speechbrain.tokenizers.SentencePiece - INFO - ==== Loading Tokenizer ===
|
262 |
+
2022-04-05 21:06:46,007 - speechbrain.tokenizers.SentencePiece - INFO - Tokenizer path: results/wav2vec2_ctc_AMHARIC/1249/save/224_char.model
|
263 |
+
2022-04-05 21:06:46,007 - speechbrain.tokenizers.SentencePiece - INFO - Tokenizer vocab_size: 224
|
264 |
+
2022-04-05 21:06:46,007 - speechbrain.tokenizers.SentencePiece - INFO - Tokenizer type: char
|
265 |
+
2022-04-05 21:06:46,145 - speechbrain.core - INFO - Info: auto_mix_prec arg from hparam file is used
|
266 |
+
2022-04-05 21:06:46,145 - speechbrain.core - INFO - Info: ckpt_interval_minutes arg from hparam file is used
|
267 |
+
2022-04-05 21:06:49,137 - speechbrain.core - INFO - 318.8M trainable parameters in ASR
|
268 |
+
2022-04-05 21:06:49,142 - speechbrain.utils.checkpoints - INFO - Would load a checkpoint here, but none found yet.
|
269 |
+
2022-04-05 21:06:49,142 - speechbrain.utils.epoch_loop - INFO - Going into epoch 1
|
270 |
+
2022-04-05 21:18:09,453 - speechbrain.core - ERROR - Exception:
|
271 |
+
Traceback (most recent call last):
|
272 |
+
File "/data/n.abdoumohamed/DVoice/speechbrain/recipes/DVoice/ASR/CTC/train2.py", line 366, in <module>
|
273 |
+
asr_brain.fit(
|
274 |
+
File "/data/n.abdoumohamed/DVoice/speechbrain/speechbrain/core.py", line 1034, in fit
|
275 |
+
loss = self.fit_batch(batch)
|
276 |
+
File "/data/n.abdoumohamed/DVoice/speechbrain/recipes/DVoice/ASR/CTC/train2.py", line 120, in fit_batch
|
277 |
+
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
|
278 |
+
File "/data/n.abdoumohamed/DVoice/speechbrain/recipes/DVoice/ASR/CTC/train2.py", line 61, in compute_forward
|
279 |
+
feats = self.modules.wav2vec2(wavs)
|
280 |
+
File "/home/n.abdoumohamed/.conda/envs/speechbrain/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
|
281 |
+
return forward_call(*input, **kwargs)
|
282 |
+
File "/data/n.abdoumohamed/DVoice/speechbrain/speechbrain/lobes/models/huggingface_wav2vec.py", line 254, in forward
|
283 |
+
return self.extract_features(wav)
|
284 |
+
File "/data/n.abdoumohamed/DVoice/speechbrain/speechbrain/lobes/models/huggingface_wav2vec.py", line 269, in extract_features
|
285 |
+
out = self.model(wav)[0]
|
286 |
+
File "/home/n.abdoumohamed/.conda/envs/speechbrain/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
|
287 |
+
return forward_call(*input, **kwargs)
|
288 |
+
File "/home/n.abdoumohamed/.conda/envs/speechbrain/lib/python3.9/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py", line 1253, in forward
|
289 |
+
encoder_outputs = self.encoder(
|
290 |
+
File "/home/n.abdoumohamed/.conda/envs/speechbrain/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
|
291 |
+
return forward_call(*input, **kwargs)
|
292 |
+
File "/home/n.abdoumohamed/.conda/envs/speechbrain/lib/python3.9/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py", line 846, in forward
|
293 |
+
layer_outputs = layer(
|
294 |
+
File "/home/n.abdoumohamed/.conda/envs/speechbrain/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
|
295 |
+
return forward_call(*input, **kwargs)
|
296 |
+
File "/home/n.abdoumohamed/.conda/envs/speechbrain/lib/python3.9/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py", line 687, in forward
|
297 |
+
hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states))
|
298 |
+
File "/home/n.abdoumohamed/.conda/envs/speechbrain/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
|
299 |
+
return forward_call(*input, **kwargs)
|
300 |
+
File "/home/n.abdoumohamed/.conda/envs/speechbrain/lib/python3.9/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py", line 626, in forward
|
301 |
+
hidden_states = self.output_dense(hidden_states)
|
302 |
+
File "/home/n.abdoumohamed/.conda/envs/speechbrain/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
|
303 |
+
return forward_call(*input, **kwargs)
|
304 |
+
File "/home/n.abdoumohamed/.conda/envs/speechbrain/lib/python3.9/site-packages/torch/nn/modules/linear.py", line 103, in forward
|
305 |
+
return F.linear(input, self.weight, self.bias)
|
306 |
+
File "/home/n.abdoumohamed/.conda/envs/speechbrain/lib/python3.9/site-packages/torch/nn/functional.py", line 1848, in linear
|
307 |
+
return torch._C._nn.linear(input, weight, bias)
|
308 |
+
RuntimeError: CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 11.91 GiB total capacity; 10.65 GiB already allocated; 17.25 MiB free; 10.95 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
309 |
+
2022-04-06 10:21:42,642 - speechbrain.core - INFO - Beginning experiment!
|
310 |
+
2022-04-06 10:21:42,643 - speechbrain.core - INFO - Experiment folder: results/wav2vec2_ctc_AMHARIC/1249
|
311 |
+
2022-04-06 10:21:43,318 - speechbrain.utils.superpowers - DEBUG - aiohttp==3.8.1
|
312 |
+
aiosignal==1.2.0
|
313 |
+
appdirs==1.4.4
|
314 |
+
async-timeout==4.0.2
|
315 |
+
attrs==21.4.0
|
316 |
+
audioread==2.1.9
|
317 |
+
azure-core==1.21.1
|
318 |
+
azure-storage-blob==12.9.0
|
319 |
+
bcrypt==3.2.0
|
320 |
+
black==19.10b0
|
321 |
+
certifi==2021.10.8
|
322 |
+
cffi==1.15.0
|
323 |
+
cfgv==3.3.1
|
324 |
+
charset-normalizer==2.0.10
|
325 |
+
click==8.0.3
|
326 |
+
cryptography==36.0.1
|
327 |
+
datasets==1.13.3
|
328 |
+
decorator==5.1.1
|
329 |
+
dill==0.3.4
|
330 |
+
distlib==0.3.4
|
331 |
+
entrypoints==0.3
|
332 |
+
ffmpeg==1.4
|
333 |
+
filelock==3.4.2
|
334 |
+
flake8==3.7.9
|
335 |
+
frozenlist==1.3.0
|
336 |
+
fsspec==2022.2.0
|
337 |
+
huggingface-hub==0.2.1
|
338 |
+
HyperPyYAML==1.0.0
|
339 |
+
identify==2.4.4
|
340 |
+
idna==3.3
|
341 |
+
isodate==0.6.1
|
342 |
+
joblib==1.1.0
|
343 |
+
librosa==0.8.1
|
344 |
+
llvmlite==0.38.0
|
345 |
+
mccabe==0.6.1
|
346 |
+
more-itertools==8.12.0
|
347 |
+
msrest==0.6.21
|
348 |
+
multidict==6.0.2
|
349 |
+
multiprocess==0.70.12.2
|
350 |
+
mutagen==1.45.1
|
351 |
+
nodeenv==1.6.0
|
352 |
+
numba==0.55.0
|
353 |
+
numpy==1.21.5
|
354 |
+
oauthlib==3.1.1
|
355 |
+
packaging==21.3
|
356 |
+
pandas==1.3.5
|
357 |
+
paramiko==2.10.3
|
358 |
+
pathspec==0.9.0
|
359 |
+
platformdirs==2.4.1
|
360 |
+
pluggy==0.13.1
|
361 |
+
pooch==1.5.2
|
362 |
+
pre-commit==2.17.0
|
363 |
+
py==1.11.0
|
364 |
+
pyarrow==7.0.0
|
365 |
+
pycodestyle==2.5.0
|
366 |
+
pycparser==2.21
|
367 |
+
pyflakes==2.1.1
|
368 |
+
PyNaCl==1.5.0
|
369 |
+
pyparsing==3.0.6
|
370 |
+
pytest==5.4.1
|
371 |
+
python-dateutil==2.8.2
|
372 |
+
pytz==2021.3
|
373 |
+
PyYAML==6.0
|
374 |
+
regex==2022.1.18
|
375 |
+
requests==2.27.1
|
376 |
+
requests-oauthlib==1.3.0
|
377 |
+
resampy==0.2.2
|
378 |
+
ruamel.yaml==0.17.20
|
379 |
+
ruamel.yaml.clib==0.2.6
|
380 |
+
sacremoses==0.0.47
|
381 |
+
scikit-learn==1.0.2
|
382 |
+
scipy==1.7.3
|
383 |
+
scp==0.14.4
|
384 |
+
sentencepiece==0.1.96
|
385 |
+
six==1.16.0
|
386 |
+
SoundFile==0.10.3.post1
|
387 |
+
threadpoolctl==3.0.0
|
388 |
+
tokenizers==0.10.3
|
389 |
+
toml==0.10.2
|
390 |
+
torch==1.10.1
|
391 |
+
torchaudio==0.10.1
|
392 |
+
tqdm==4.62.3
|
393 |
+
transformers==4.13.0
|
394 |
+
typed-ast==1.5.1
|
395 |
+
typing_extensions==4.0.1
|
396 |
+
urllib3==1.26.8
|
397 |
+
virtualenv==20.13.0
|
398 |
+
wcwidth==0.2.5
|
399 |
+
xxhash==3.0.0
|
400 |
+
yamllint==1.23.0
|
401 |
+
yarl==1.7.2
|
402 |
+
|
403 |
+
|
404 |
+
2022-04-06 10:21:43,439 - dvoice_prepare - INFO - results/wav2vec2_ctc_AMHARIC/1249/save/train.csv already exists, skipping data preparation!
|
405 |
+
2022-04-06 10:21:43,439 - dvoice_prepare - INFO - results/wav2vec2_ctc_AMHARIC/1249/save/dev.csv already exists, skipping data preparation!
|
406 |
+
2022-04-06 10:21:43,439 - dvoice_prepare - INFO - results/wav2vec2_ctc_AMHARIC/1249/save/test.csv already exists, skipping data preparation!
|
407 |
+
2022-04-06 10:21:43,439 - speechbrain.tokenizers.SentencePiece - INFO - Tokenizer is already trained.
|
408 |
+
2022-04-06 10:21:43,439 - speechbrain.tokenizers.SentencePiece - INFO - ==== Loading Tokenizer ===
|
409 |
+
2022-04-06 10:21:43,439 - speechbrain.tokenizers.SentencePiece - INFO - Tokenizer path: results/wav2vec2_ctc_AMHARIC/1249/save/224_char.model
|
410 |
+
2022-04-06 10:21:43,440 - speechbrain.tokenizers.SentencePiece - INFO - Tokenizer vocab_size: 224
|
411 |
+
2022-04-06 10:21:43,440 - speechbrain.tokenizers.SentencePiece - INFO - Tokenizer type: char
|
412 |
+
2022-04-06 10:21:43,580 - speechbrain.core - INFO - Info: auto_mix_prec arg from hparam file is used
|
413 |
+
2022-04-06 10:21:43,580 - speechbrain.core - INFO - Info: ckpt_interval_minutes arg from hparam file is used
|
414 |
+
2022-04-06 10:21:46,557 - speechbrain.core - INFO - 318.8M trainable parameters in ASR
|
415 |
+
2022-04-06 10:21:46,562 - speechbrain.utils.checkpoints - INFO - Would load a checkpoint here, but none found yet.
|
416 |
+
2022-04-06 10:21:46,562 - speechbrain.utils.epoch_loop - INFO - Going into epoch 1
|
417 |
+
2022-04-06 10:45:30,095 - speechbrain.core - ERROR - Exception:
|
418 |
+
Traceback (most recent call last):
|
419 |
+
File "/data/n.abdoumohamed/DVoice/speechbrain/recipes/DVoice/ASR/CTC/train2.py", line 366, in <module>
|
420 |
+
asr_brain.fit(
|
421 |
+
File "/data/n.abdoumohamed/DVoice/speechbrain/speechbrain/core.py", line 1034, in fit
|
422 |
+
loss = self.fit_batch(batch)
|
423 |
+
File "/data/n.abdoumohamed/DVoice/speechbrain/recipes/DVoice/ASR/CTC/train2.py", line 120, in fit_batch
|
424 |
+
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
|
425 |
+
File "/data/n.abdoumohamed/DVoice/speechbrain/recipes/DVoice/ASR/CTC/train2.py", line 61, in compute_forward
|
426 |
+
feats = self.modules.wav2vec2(wavs)
|
427 |
+
File "/home/n.abdoumohamed/.conda/envs/speechbrain/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
|
428 |
+
return forward_call(*input, **kwargs)
|
429 |
+
File "/data/n.abdoumohamed/DVoice/speechbrain/speechbrain/lobes/models/huggingface_wav2vec.py", line 254, in forward
|
430 |
+
return self.extract_features(wav)
|
431 |
+
File "/data/n.abdoumohamed/DVoice/speechbrain/speechbrain/lobes/models/huggingface_wav2vec.py", line 269, in extract_features
|
432 |
+
out = self.model(wav)[0]
|
433 |
+
File "/home/n.abdoumohamed/.conda/envs/speechbrain/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
|
434 |
+
return forward_call(*input, **kwargs)
|
435 |
+
File "/home/n.abdoumohamed/.conda/envs/speechbrain/lib/python3.9/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py", line 1253, in forward
|
436 |
+
encoder_outputs = self.encoder(
|
437 |
+
File "/home/n.abdoumohamed/.conda/envs/speechbrain/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
|
438 |
+
return forward_call(*input, **kwargs)
|
439 |
+
File "/home/n.abdoumohamed/.conda/envs/speechbrain/lib/python3.9/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py", line 846, in forward
|
440 |
+
layer_outputs = layer(
|
441 |
+
File "/home/n.abdoumohamed/.conda/envs/speechbrain/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
|
442 |
+
return forward_call(*input, **kwargs)
|
443 |
+
File "/home/n.abdoumohamed/.conda/envs/speechbrain/lib/python3.9/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py", line 682, in forward
|
444 |
+
hidden_states, attn_weights, _ = self.attention(
|
445 |
+
File "/home/n.abdoumohamed/.conda/envs/speechbrain/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
|
446 |
+
return forward_call(*input, **kwargs)
|
447 |
+
File "/home/n.abdoumohamed/.conda/envs/speechbrain/lib/python3.9/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py", line 586, in forward
|
448 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
449 |
+
File "/home/n.abdoumohamed/.conda/envs/speechbrain/lib/python3.9/site-packages/torch/nn/functional.py", line 1169, in dropout
|
450 |
+
return _VF.dropout_(input, p, training) if inplace else _VF.dropout(input, p, training)
|
451 |
+
RuntimeError: CUDA out of memory. Tried to allocate 46.00 MiB (GPU 0; 11.91 GiB total capacity; 10.61 GiB already allocated; 5.25 MiB free; 10.96 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
|
452 |
+
2022-04-07 01:24:51,494 - speechbrain.core - INFO - Beginning experiment!
|
453 |
+
2022-04-07 01:24:51,498 - speechbrain.core - INFO - Experiment folder: results/wav2vec2_ctc_AMHARIC/1249
|
454 |
+
2022-04-07 01:24:52,086 - speechbrain.utils.superpowers - DEBUG - aiohttp==3.8.1
|
455 |
+
aiosignal==1.2.0
|
456 |
+
appdirs==1.4.4
|
457 |
+
async-timeout==4.0.2
|
458 |
+
attrs==21.4.0
|
459 |
+
audioread==2.1.9
|
460 |
+
azure-core==1.21.1
|
461 |
+
azure-storage-blob==12.9.0
|
462 |
+
bcrypt==3.2.0
|
463 |
+
black==19.10b0
|
464 |
+
certifi==2021.10.8
|
465 |
+
cffi==1.15.0
|
466 |
+
cfgv==3.3.1
|
467 |
+
charset-normalizer==2.0.10
|
468 |
+
click==8.0.3
|
469 |
+
cryptography==36.0.1
|
470 |
+
datasets==1.13.3
|
471 |
+
decorator==5.1.1
|
472 |
+
dill==0.3.4
|
473 |
+
distlib==0.3.4
|
474 |
+
entrypoints==0.3
|
475 |
+
ffmpeg==1.4
|
476 |
+
filelock==3.4.2
|
477 |
+
flake8==3.7.9
|
478 |
+
frozenlist==1.3.0
|
479 |
+
fsspec==2022.2.0
|
480 |
+
huggingface-hub==0.2.1
|
481 |
+
HyperPyYAML==1.0.0
|
482 |
+
identify==2.4.4
|
483 |
+
idna==3.3
|
484 |
+
isodate==0.6.1
|
485 |
+
joblib==1.1.0
|
486 |
+
librosa==0.8.1
|
487 |
+
llvmlite==0.38.0
|
488 |
+
mccabe==0.6.1
|
489 |
+
more-itertools==8.12.0
|
490 |
+
msrest==0.6.21
|
491 |
+
multidict==6.0.2
|
492 |
+
multiprocess==0.70.12.2
|
493 |
+
mutagen==1.45.1
|
494 |
+
nodeenv==1.6.0
|
495 |
+
numba==0.55.0
|
496 |
+
numpy==1.21.5
|
497 |
+
oauthlib==3.1.1
|
498 |
+
packaging==21.3
|
499 |
+
pandas==1.3.5
|
500 |
+
paramiko==2.10.3
|
501 |
+
pathspec==0.9.0
|
502 |
+
platformdirs==2.4.1
|
503 |
+
pluggy==0.13.1
|
504 |
+
pooch==1.5.2
|
505 |
+
pre-commit==2.17.0
|
506 |
+
py==1.11.0
|
507 |
+
pyarrow==7.0.0
|
508 |
+
pycodestyle==2.5.0
|
509 |
+
pycparser==2.21
|
510 |
+
pyflakes==2.1.1
|
511 |
+
PyNaCl==1.5.0
|
512 |
+
pyparsing==3.0.6
|
513 |
+
pytest==5.4.1
|
514 |
+
python-dateutil==2.8.2
|
515 |
+
pytz==2021.3
|
516 |
+
PyYAML==6.0
|
517 |
+
regex==2022.1.18
|
518 |
+
requests==2.27.1
|
519 |
+
requests-oauthlib==1.3.0
|
520 |
+
resampy==0.2.2
|
521 |
+
ruamel.yaml==0.17.20
|
522 |
+
ruamel.yaml.clib==0.2.6
|
523 |
+
sacremoses==0.0.47
|
524 |
+
scikit-learn==1.0.2
|
525 |
+
scipy==1.7.3
|
526 |
+
scp==0.14.4
|
527 |
+
sentencepiece==0.1.96
|
528 |
+
six==1.16.0
|
529 |
+
SoundFile==0.10.3.post1
|
530 |
+
threadpoolctl==3.0.0
|
531 |
+
tokenizers==0.10.3
|
532 |
+
toml==0.10.2
|
533 |
+
torch==1.10.1
|
534 |
+
torchaudio==0.10.1
|
535 |
+
tqdm==4.62.3
|
536 |
+
transformers==4.13.0
|
537 |
+
typed-ast==1.5.1
|
538 |
+
typing_extensions==4.0.1
|
539 |
+
urllib3==1.26.8
|
540 |
+
virtualenv==20.13.0
|
541 |
+
wcwidth==0.2.5
|
542 |
+
xxhash==3.0.0
|
543 |
+
yamllint==1.23.0
|
544 |
+
yarl==1.7.2
|
545 |
+
|
546 |
+
|
547 |
+
2022-04-07 01:24:52,319 - dvoice_prepare - INFO - results/wav2vec2_ctc_AMHARIC/1249/save/train.csv already exists, skipping data preparation!
|
548 |
+
2022-04-07 01:24:52,319 - dvoice_prepare - INFO - results/wav2vec2_ctc_AMHARIC/1249/save/dev.csv already exists, skipping data preparation!
|
549 |
+
2022-04-07 01:24:52,319 - dvoice_prepare - INFO - results/wav2vec2_ctc_AMHARIC/1249/save/test.csv already exists, skipping data preparation!
|
550 |
+
2022-04-07 01:24:52,323 - speechbrain.tokenizers.SentencePiece - INFO - Tokenizer is already trained.
|
551 |
+
2022-04-07 01:24:52,323 - speechbrain.tokenizers.SentencePiece - INFO - ==== Loading Tokenizer ===
|
552 |
+
2022-04-07 01:24:52,323 - speechbrain.tokenizers.SentencePiece - INFO - Tokenizer path: results/wav2vec2_ctc_AMHARIC/1249/save/224_char.model
|
553 |
+
2022-04-07 01:24:52,323 - speechbrain.tokenizers.SentencePiece - INFO - Tokenizer vocab_size: 224
|
554 |
+
2022-04-07 01:24:52,323 - speechbrain.tokenizers.SentencePiece - INFO - Tokenizer type: char
|
555 |
+
2022-04-07 01:24:52,988 - speechbrain.core - INFO - Info: auto_mix_prec arg from hparam file is used
|
556 |
+
2022-04-07 01:24:52,988 - speechbrain.core - INFO - Info: ckpt_interval_minutes arg from hparam file is used
|
557 |
+
2022-04-07 01:24:56,199 - speechbrain.core - INFO - 318.8M trainable parameters in ASR
|
558 |
+
2022-04-07 01:24:56,215 - speechbrain.utils.checkpoints - INFO - Would load a checkpoint here, but none found yet.
|
559 |
+
2022-04-07 01:24:56,215 - speechbrain.utils.epoch_loop - INFO - Going into epoch 1
|
560 |
+
2022-04-07 01:39:30,997 - speechbrain.utils.train_logger - INFO - epoch: 1, lr_model: 1.00e+00, lr_wav2vec: 1.00e-04 - train loss: 2.16 - valid loss: 6.31e-01, valid CER: 17.94, valid WER: 61.08
|
561 |
+
2022-04-07 01:41:12,908 - speechbrain.utils.checkpoints - INFO - Saved an end-of-epoch checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+01-39-31+00
|
562 |
+
2022-04-07 01:41:13,081 - speechbrain.utils.epoch_loop - INFO - Going into epoch 2
|
563 |
+
2022-04-07 01:54:26,673 - speechbrain.utils.train_logger - INFO - epoch: 2, lr_model: 1.00e+00, lr_wav2vec: 1.00e-04 - train loss: 7.60e-01 - valid loss: 4.76e-01, valid CER: 13.59, valid WER: 49.70
|
564 |
+
2022-04-07 01:56:27,270 - speechbrain.utils.checkpoints - INFO - Saved an end-of-epoch checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+01-54-26+00
|
565 |
+
2022-04-07 01:56:28,698 - speechbrain.utils.checkpoints - INFO - Deleted checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+01-39-31+00
|
566 |
+
2022-04-07 01:56:28,698 - speechbrain.utils.epoch_loop - INFO - Going into epoch 3
|
567 |
+
2022-04-07 02:09:43,082 - speechbrain.utils.train_logger - INFO - epoch: 3, lr_model: 1.00e+00, lr_wav2vec: 1.00e-04 - train loss: 5.88e-01 - valid loss: 4.04e-01, valid CER: 11.77, valid WER: 43.35
|
568 |
+
2022-04-07 02:14:21,215 - speechbrain.utils.checkpoints - INFO - Saved an end-of-epoch checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+02-09-43+00
|
569 |
+
2022-04-07 02:14:22,071 - speechbrain.utils.checkpoints - INFO - Deleted checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+01-54-26+00
|
570 |
+
2022-04-07 02:14:22,071 - speechbrain.utils.epoch_loop - INFO - Going into epoch 4
|
571 |
+
2022-04-07 02:27:35,021 - speechbrain.utils.train_logger - INFO - epoch: 4, lr_model: 1.00e+00, lr_wav2vec: 1.00e-04 - train loss: 4.97e-01 - valid loss: 3.75e-01, valid CER: 10.61, valid WER: 39.29
|
572 |
+
2022-04-07 02:28:59,128 - speechbrain.utils.checkpoints - INFO - Saved an end-of-epoch checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+02-27-35+00
|
573 |
+
2022-04-07 02:29:00,277 - speechbrain.utils.checkpoints - INFO - Deleted checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+02-09-43+00
|
574 |
+
2022-04-07 02:29:00,277 - speechbrain.utils.epoch_loop - INFO - Going into epoch 5
|
575 |
+
2022-04-07 02:42:13,500 - speechbrain.utils.train_logger - INFO - epoch: 5, lr_model: 1.00e+00, lr_wav2vec: 1.00e-04 - train loss: 4.29e-01 - valid loss: 3.71e-01, valid CER: 10.15, valid WER: 37.38
|
576 |
+
2022-04-07 02:47:20,435 - speechbrain.utils.checkpoints - INFO - Saved an end-of-epoch checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+02-42-13+00
|
577 |
+
2022-04-07 02:47:21,615 - speechbrain.utils.checkpoints - INFO - Deleted checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+02-27-35+00
|
578 |
+
2022-04-07 02:47:21,615 - speechbrain.utils.epoch_loop - INFO - Going into epoch 6
|
579 |
+
2022-04-07 03:00:32,602 - speechbrain.utils.train_logger - INFO - epoch: 6, lr_model: 1.00e+00, lr_wav2vec: 1.00e-04 - train loss: 3.81e-01 - valid loss: 3.54e-01, valid CER: 9.54, valid WER: 35.23
|
580 |
+
2022-04-07 03:02:35,290 - speechbrain.utils.checkpoints - INFO - Saved an end-of-epoch checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+03-00-32+00
|
581 |
+
2022-04-07 03:02:35,924 - speechbrain.utils.checkpoints - INFO - Deleted checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+02-42-13+00
|
582 |
+
2022-04-07 03:02:35,925 - speechbrain.utils.epoch_loop - INFO - Going into epoch 7
|
583 |
+
2022-04-07 03:15:54,749 - speechbrain.utils.train_logger - INFO - epoch: 7, lr_model: 1.00e+00, lr_wav2vec: 1.00e-04 - train loss: 3.39e-01 - valid loss: 3.41e-01, valid CER: 8.98, valid WER: 33.48
|
584 |
+
2022-04-07 03:17:35,622 - speechbrain.utils.checkpoints - INFO - Saved an end-of-epoch checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+03-15-54+00
|
585 |
+
2022-04-07 03:17:36,628 - speechbrain.utils.checkpoints - INFO - Deleted checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+03-00-32+00
|
586 |
+
2022-04-07 03:17:36,628 - speechbrain.utils.epoch_loop - INFO - Going into epoch 8
|
587 |
+
2022-04-07 03:30:53,354 - speechbrain.nnet.schedulers - INFO - Changing lr from 1 to 0.8
|
588 |
+
2022-04-07 03:30:53,376 - speechbrain.nnet.schedulers - INFO - Changing lr from 0.0001 to 9e-05
|
589 |
+
2022-04-07 03:30:53,520 - speechbrain.utils.train_logger - INFO - epoch: 8, lr_model: 1.00e+00, lr_wav2vec: 1.00e-04 - train loss: 3.08e-01 - valid loss: 3.57e-01, valid CER: 8.80, valid WER: 32.41
|
590 |
+
2022-04-07 03:33:47,026 - speechbrain.utils.checkpoints - INFO - Saved an end-of-epoch checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+03-30-53+00
|
591 |
+
2022-04-07 03:33:48,209 - speechbrain.utils.checkpoints - INFO - Deleted checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+03-15-54+00
|
592 |
+
2022-04-07 03:33:48,209 - speechbrain.utils.epoch_loop - INFO - Going into epoch 9
|
593 |
+
2022-04-07 03:46:59,930 - speechbrain.utils.train_logger - INFO - epoch: 9, lr_model: 8.00e-01, lr_wav2vec: 9.00e-05 - train loss: 2.70e-01 - valid loss: 3.46e-01, valid CER: 8.47, valid WER: 31.33
|
594 |
+
2022-04-07 03:48:26,079 - speechbrain.utils.checkpoints - INFO - Saved an end-of-epoch checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+03-46-59+00
|
595 |
+
2022-04-07 03:48:26,901 - speechbrain.utils.checkpoints - INFO - Deleted checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+03-30-53+00
|
596 |
+
2022-04-07 03:48:26,901 - speechbrain.utils.epoch_loop - INFO - Going into epoch 10
|
597 |
+
2022-04-07 04:01:43,511 - speechbrain.nnet.schedulers - INFO - Changing lr from 0.8 to 0.64
|
598 |
+
2022-04-07 04:01:43,527 - speechbrain.nnet.schedulers - INFO - Changing lr from 9e-05 to 8.1e-05
|
599 |
+
2022-04-07 04:01:43,843 - speechbrain.utils.train_logger - INFO - epoch: 10, lr_model: 8.00e-01, lr_wav2vec: 9.00e-05 - train loss: 2.45e-01 - valid loss: 3.64e-01, valid CER: 8.30, valid WER: 30.31
|
600 |
+
2022-04-07 04:03:02,059 - speechbrain.utils.checkpoints - INFO - Saved an end-of-epoch checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+04-01-43+00
|
601 |
+
2022-04-07 04:03:02,966 - speechbrain.utils.checkpoints - INFO - Deleted checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+03-46-59+00
|
602 |
+
2022-04-07 04:03:02,966 - speechbrain.utils.epoch_loop - INFO - Going into epoch 11
|
603 |
+
2022-04-07 04:16:16,977 - speechbrain.utils.train_logger - INFO - epoch: 11, lr_model: 6.40e-01, lr_wav2vec: 8.10e-05 - train loss: 2.17e-01 - valid loss: 3.43e-01, valid CER: 8.00, valid WER: 29.91
|
604 |
+
2022-04-07 04:17:41,125 - speechbrain.utils.checkpoints - INFO - Saved an end-of-epoch checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+04-16-16+00
|
605 |
+
2022-04-07 04:17:42,305 - speechbrain.utils.checkpoints - INFO - Deleted checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+04-01-43+00
|
606 |
+
2022-04-07 04:17:42,305 - speechbrain.utils.epoch_loop - INFO - Going into epoch 12
|
607 |
+
2022-04-07 04:30:56,259 - speechbrain.nnet.schedulers - INFO - Changing lr from 0.64 to 0.51
|
608 |
+
2022-04-07 04:30:56,276 - speechbrain.nnet.schedulers - INFO - Changing lr from 8.1e-05 to 7.3e-05
|
609 |
+
2022-04-07 04:30:56,372 - speechbrain.utils.train_logger - INFO - epoch: 12, lr_model: 6.40e-01, lr_wav2vec: 8.10e-05 - train loss: 1.98e-01 - valid loss: 3.68e-01, valid CER: 7.93, valid WER: 29.49
|
610 |
+
2022-04-07 04:33:36,676 - speechbrain.utils.checkpoints - INFO - Saved an end-of-epoch checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+04-30-56+00
|
611 |
+
2022-04-07 04:33:38,939 - speechbrain.utils.checkpoints - INFO - Deleted checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+04-16-16+00
|
612 |
+
2022-04-07 04:33:38,939 - speechbrain.utils.epoch_loop - INFO - Going into epoch 13
|
613 |
+
2022-04-07 04:46:50,071 - speechbrain.nnet.schedulers - INFO - Changing lr from 0.51 to 0.41
|
614 |
+
2022-04-07 04:46:50,283 - speechbrain.nnet.schedulers - INFO - Changing lr from 7.3e-05 to 6.6e-05
|
615 |
+
2022-04-07 04:46:50,494 - speechbrain.utils.train_logger - INFO - epoch: 13, lr_model: 5.12e-01, lr_wav2vec: 7.29e-05 - train loss: 1.75e-01 - valid loss: 3.94e-01, valid CER: 7.78, valid WER: 29.09
|
616 |
+
2022-04-07 04:49:19,543 - speechbrain.utils.checkpoints - INFO - Saved an end-of-epoch checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+04-46-50+00
|
617 |
+
2022-04-07 04:49:20,921 - speechbrain.utils.checkpoints - INFO - Deleted checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+04-30-56+00
|
618 |
+
2022-04-07 04:49:20,921 - speechbrain.utils.epoch_loop - INFO - Going into epoch 14
|
619 |
+
2022-04-07 05:02:32,796 - speechbrain.nnet.schedulers - INFO - Changing lr from 0.41 to 0.33
|
620 |
+
2022-04-07 05:02:32,805 - speechbrain.nnet.schedulers - INFO - Changing lr from 6.6e-05 to 5.9e-05
|
621 |
+
2022-04-07 05:02:32,852 - speechbrain.utils.train_logger - INFO - epoch: 14, lr_model: 4.10e-01, lr_wav2vec: 6.56e-05 - train loss: 1.58e-01 - valid loss: 3.94e-01, valid CER: 7.75, valid WER: 28.90
|
622 |
+
2022-04-07 05:04:12,624 - speechbrain.utils.checkpoints - INFO - Saved an end-of-epoch checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+05-02-32+00
|
623 |
+
2022-04-07 05:04:14,019 - speechbrain.utils.checkpoints - INFO - Deleted checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+04-46-50+00
|
624 |
+
2022-04-07 05:04:14,019 - speechbrain.utils.epoch_loop - INFO - Going into epoch 15
|
625 |
+
2022-04-07 05:17:40,541 - speechbrain.nnet.schedulers - INFO - Changing lr from 0.33 to 0.26
|
626 |
+
2022-04-07 05:17:40,556 - speechbrain.nnet.schedulers - INFO - Changing lr from 5.9e-05 to 5.3e-05
|
627 |
+
2022-04-07 05:17:40,606 - speechbrain.utils.train_logger - INFO - epoch: 15, lr_model: 3.28e-01, lr_wav2vec: 5.90e-05 - train loss: 1.37e-01 - valid loss: 4.13e-01, valid CER: 7.64, valid WER: 28.39
|
628 |
+
2022-04-07 05:19:24,936 - speechbrain.utils.checkpoints - INFO - Saved an end-of-epoch checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+05-17-40+00
|
629 |
+
2022-04-07 05:19:25,870 - speechbrain.utils.checkpoints - INFO - Deleted checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+05-02-32+00
|
630 |
+
2022-04-07 05:19:25,870 - speechbrain.utils.epoch_loop - INFO - Going into epoch 16
|
631 |
+
2022-04-07 05:32:43,793 - speechbrain.utils.train_logger - INFO - epoch: 16, lr_model: 2.62e-01, lr_wav2vec: 5.31e-05 - train loss: 1.25e-01 - valid loss: 3.95e-01, valid CER: 7.48, valid WER: 27.94
|
632 |
+
2022-04-07 05:34:31,869 - speechbrain.utils.checkpoints - INFO - Saved an end-of-epoch checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+05-32-43+00
|
633 |
+
2022-04-07 05:34:32,562 - speechbrain.utils.checkpoints - INFO - Deleted checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+05-17-40+00
|
634 |
+
2022-04-07 05:34:32,563 - speechbrain.utils.epoch_loop - INFO - Going into epoch 17
|
635 |
+
2022-04-07 05:47:42,780 - speechbrain.nnet.schedulers - INFO - Changing lr from 0.26 to 0.21
|
636 |
+
2022-04-07 05:47:42,796 - speechbrain.nnet.schedulers - INFO - Changing lr from 5.3e-05 to 4.8e-05
|
637 |
+
2022-04-07 05:47:42,879 - speechbrain.utils.train_logger - INFO - epoch: 17, lr_model: 2.62e-01, lr_wav2vec: 5.31e-05 - train loss: 1.20e-01 - valid loss: 4.12e-01, valid CER: 7.36, valid WER: 27.73
|
638 |
+
2022-04-07 05:50:08,133 - speechbrain.utils.checkpoints - INFO - Saved an end-of-epoch checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+05-47-42+00
|
639 |
+
2022-04-07 05:50:11,233 - speechbrain.utils.checkpoints - INFO - Deleted checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+05-32-43+00
|
640 |
+
2022-04-07 05:50:11,244 - speechbrain.utils.epoch_loop - INFO - Going into epoch 18
|
641 |
+
2022-04-07 06:03:30,233 - speechbrain.nnet.schedulers - INFO - Changing lr from 0.21 to 0.17
|
642 |
+
2022-04-07 06:03:30,246 - speechbrain.nnet.schedulers - INFO - Changing lr from 4.8e-05 to 4.3e-05
|
643 |
+
2022-04-07 06:03:30,328 - speechbrain.utils.train_logger - INFO - epoch: 18, lr_model: 2.10e-01, lr_wav2vec: 4.78e-05 - train loss: 1.03e-01 - valid loss: 4.31e-01, valid CER: 7.44, valid WER: 27.69
|
644 |
+
2022-04-07 06:07:59,476 - speechbrain.utils.checkpoints - INFO - Saved an end-of-epoch checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+06-03-30+00
|
645 |
+
2022-04-07 06:08:02,491 - speechbrain.utils.checkpoints - INFO - Deleted checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+05-47-42+00
|
646 |
+
2022-04-07 06:08:02,503 - speechbrain.utils.epoch_loop - INFO - Going into epoch 19
|
647 |
+
2022-04-07 06:21:15,279 - speechbrain.nnet.schedulers - INFO - Changing lr from 0.17 to 0.13
|
648 |
+
2022-04-07 06:21:15,296 - speechbrain.nnet.schedulers - INFO - Changing lr from 4.3e-05 to 3.9e-05
|
649 |
+
2022-04-07 06:21:15,414 - speechbrain.utils.train_logger - INFO - epoch: 19, lr_model: 1.68e-01, lr_wav2vec: 4.30e-05 - train loss: 9.82e-02 - valid loss: 4.35e-01, valid CER: 7.28, valid WER: 27.08
|
650 |
+
2022-04-07 06:23:34,904 - speechbrain.utils.checkpoints - INFO - Saved an end-of-epoch checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+06-21-15+00
|
651 |
+
2022-04-07 06:23:36,249 - speechbrain.utils.checkpoints - INFO - Deleted checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+06-03-30+00
|
652 |
+
2022-04-07 06:23:36,250 - speechbrain.utils.epoch_loop - INFO - Going into epoch 20
|
653 |
+
2022-04-07 06:36:49,810 - speechbrain.nnet.schedulers - INFO - Changing lr from 0.13 to 0.11
|
654 |
+
2022-04-07 06:36:49,823 - speechbrain.nnet.schedulers - INFO - Changing lr from 3.9e-05 to 3.5e-05
|
655 |
+
2022-04-07 06:36:49,890 - speechbrain.utils.train_logger - INFO - epoch: 20, lr_model: 1.34e-01, lr_wav2vec: 3.87e-05 - train loss: 8.78e-02 - valid loss: 4.42e-01, valid CER: 7.27, valid WER: 27.18
|
656 |
+
2022-04-07 06:39:22,101 - speechbrain.utils.checkpoints - INFO - Saved an end-of-epoch checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+06-36-49+00
|
657 |
+
2022-04-07 06:39:22,945 - speechbrain.utils.epoch_loop - INFO - Going into epoch 21
|
658 |
+
2022-04-07 06:52:36,778 - speechbrain.nnet.schedulers - INFO - Changing lr from 0.11 to 0.086
|
659 |
+
2022-04-07 06:52:36,782 - speechbrain.nnet.schedulers - INFO - Changing lr from 3.5e-05 to 3.1e-05
|
660 |
+
2022-04-07 06:52:36,852 - speechbrain.utils.train_logger - INFO - epoch: 21, lr_model: 1.07e-01, lr_wav2vec: 3.49e-05 - train loss: 8.27e-02 - valid loss: 4.72e-01, valid CER: 7.16, valid WER: 26.79
|
661 |
+
2022-04-07 06:55:10,567 - speechbrain.utils.checkpoints - INFO - Saved an end-of-epoch checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+06-52-36+00
|
662 |
+
2022-04-07 06:55:12,223 - speechbrain.utils.checkpoints - INFO - Deleted checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+06-21-15+00
|
663 |
+
2022-04-07 06:55:12,905 - speechbrain.utils.checkpoints - INFO - Deleted checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+06-36-49+00
|
664 |
+
2022-04-07 06:55:12,905 - speechbrain.utils.epoch_loop - INFO - Going into epoch 22
|
665 |
+
2022-04-07 07:08:24,492 - speechbrain.nnet.schedulers - INFO - Changing lr from 0.086 to 0.069
|
666 |
+
2022-04-07 07:08:24,497 - speechbrain.nnet.schedulers - INFO - Changing lr from 3.1e-05 to 2.8e-05
|
667 |
+
2022-04-07 07:08:24,542 - speechbrain.utils.train_logger - INFO - epoch: 22, lr_model: 8.59e-02, lr_wav2vec: 3.14e-05 - train loss: 7.39e-02 - valid loss: 4.88e-01, valid CER: 7.03, valid WER: 26.28
|
668 |
+
2022-04-07 07:10:26,930 - speechbrain.utils.checkpoints - INFO - Saved an end-of-epoch checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+07-08-24+00
|
669 |
+
2022-04-07 07:10:29,254 - speechbrain.utils.checkpoints - INFO - Deleted checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+06-52-36+00
|
670 |
+
2022-04-07 07:10:29,254 - speechbrain.utils.epoch_loop - INFO - Going into epoch 23
|
671 |
+
2022-04-07 07:23:43,676 - speechbrain.nnet.schedulers - INFO - Changing lr from 0.069 to 0.055
|
672 |
+
2022-04-07 07:23:43,692 - speechbrain.nnet.schedulers - INFO - Changing lr from 2.8e-05 to 2.5e-05
|
673 |
+
2022-04-07 07:23:43,814 - speechbrain.utils.train_logger - INFO - epoch: 23, lr_model: 6.87e-02, lr_wav2vec: 2.82e-05 - train loss: 7.24e-02 - valid loss: 4.92e-01, valid CER: 6.95, valid WER: 26.03
|
674 |
+
2022-04-07 07:29:42,385 - speechbrain.utils.checkpoints - INFO - Saved an end-of-epoch checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+07-23-43+00
|
675 |
+
2022-04-07 07:29:44,066 - speechbrain.utils.checkpoints - INFO - Deleted checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+07-08-24+00
|
676 |
+
2022-04-07 07:29:44,066 - speechbrain.utils.epoch_loop - INFO - Going into epoch 24
|
677 |
+
2022-04-07 07:43:02,440 - speechbrain.utils.train_logger - INFO - epoch: 24, lr_model: 5.50e-02, lr_wav2vec: 2.54e-05 - train loss: 6.76e-02 - valid loss: 4.80e-01, valid CER: 6.89, valid WER: 26.11
|
678 |
+
2022-04-07 07:48:09,873 - speechbrain.utils.checkpoints - INFO - Saved an end-of-epoch checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+07-43-02+00
|
679 |
+
2022-04-07 07:48:12,476 - speechbrain.utils.epoch_loop - INFO - Going into epoch 25
|
680 |
+
2022-04-07 08:01:25,251 - speechbrain.nnet.schedulers - INFO - Changing lr from 0.055 to 0.044
|
681 |
+
2022-04-07 08:01:25,297 - speechbrain.nnet.schedulers - INFO - Changing lr from 2.5e-05 to 2.3e-05
|
682 |
+
2022-04-07 08:01:25,429 - speechbrain.utils.train_logger - INFO - epoch: 25, lr_model: 5.50e-02, lr_wav2vec: 2.54e-05 - train loss: 6.21e-02 - valid loss: 5.01e-01, valid CER: 6.88, valid WER: 25.88
|
683 |
+
2022-04-07 08:03:25,750 - speechbrain.utils.checkpoints - INFO - Saved an end-of-epoch checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+08-01-25+00
|
684 |
+
2022-04-07 08:03:27,595 - speechbrain.utils.checkpoints - INFO - Deleted checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+07-43-02+00
|
685 |
+
2022-04-07 08:03:28,215 - speechbrain.utils.checkpoints - INFO - Deleted checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+07-23-43+00
|
686 |
+
2022-04-07 08:03:28,215 - speechbrain.utils.epoch_loop - INFO - Going into epoch 26
|
687 |
+
2022-04-07 08:16:35,211 - speechbrain.utils.train_logger - INFO - epoch: 26, lr_model: 4.40e-02, lr_wav2vec: 2.29e-05 - train loss: 5.94e-02 - valid loss: 4.89e-01, valid CER: 6.90, valid WER: 26.08
|
688 |
+
2022-04-07 08:19:37,126 - speechbrain.utils.checkpoints - INFO - Saved an end-of-epoch checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+08-16-35+00
|
689 |
+
2022-04-07 08:19:39,166 - speechbrain.utils.epoch_loop - INFO - Going into epoch 27
|
690 |
+
2022-04-07 08:32:51,788 - speechbrain.nnet.schedulers - INFO - Changing lr from 0.044 to 0.035
|
691 |
+
2022-04-07 08:32:51,994 - speechbrain.nnet.schedulers - INFO - Changing lr from 2.3e-05 to 2.1e-05
|
692 |
+
2022-04-07 08:32:52,086 - speechbrain.utils.train_logger - INFO - epoch: 27, lr_model: 4.40e-02, lr_wav2vec: 2.29e-05 - train loss: 5.54e-02 - valid loss: 5.09e-01, valid CER: 6.87, valid WER: 26.04
|
693 |
+
2022-04-07 08:35:48,324 - speechbrain.utils.checkpoints - INFO - Saved an end-of-epoch checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+08-32-52+00
|
694 |
+
2022-04-07 08:35:51,566 - speechbrain.utils.checkpoints - INFO - Deleted checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+08-16-35+00
|
695 |
+
2022-04-07 08:35:51,582 - speechbrain.utils.epoch_loop - INFO - Going into epoch 28
|
696 |
+
2022-04-07 08:48:53,259 - speechbrain.utils.train_logger - INFO - epoch: 28, lr_model: 3.52e-02, lr_wav2vec: 2.06e-05 - train loss: 5.55e-02 - valid loss: 5.01e-01, valid CER: 6.76, valid WER: 25.67
|
697 |
+
2022-04-07 08:50:45,339 - speechbrain.utils.checkpoints - INFO - Saved an end-of-epoch checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+08-48-53+00
|
698 |
+
2022-04-07 08:50:46,363 - speechbrain.utils.checkpoints - INFO - Deleted checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+08-32-52+00
|
699 |
+
2022-04-07 08:50:47,117 - speechbrain.utils.checkpoints - INFO - Deleted checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+08-01-25+00
|
700 |
+
2022-04-07 08:50:47,117 - speechbrain.utils.epoch_loop - INFO - Going into epoch 29
|
701 |
+
2022-04-07 09:03:47,837 - speechbrain.nnet.schedulers - INFO - Changing lr from 0.035 to 0.028
|
702 |
+
2022-04-07 09:03:47,840 - speechbrain.nnet.schedulers - INFO - Changing lr from 2.1e-05 to 1.9e-05
|
703 |
+
2022-04-07 09:03:47,887 - speechbrain.utils.train_logger - INFO - epoch: 29, lr_model: 3.52e-02, lr_wav2vec: 2.06e-05 - train loss: 5.44e-02 - valid loss: 5.10e-01, valid CER: 6.72, valid WER: 25.62
|
704 |
+
2022-04-07 09:06:30,053 - speechbrain.utils.checkpoints - INFO - Saved an end-of-epoch checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+09-03-47+00
|
705 |
+
2022-04-07 09:06:32,452 - speechbrain.utils.checkpoints - INFO - Deleted checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+08-48-53+00
|
706 |
+
2022-04-07 09:06:32,452 - speechbrain.utils.epoch_loop - INFO - Going into epoch 30
|
707 |
+
2022-04-07 09:19:28,245 - speechbrain.nnet.schedulers - INFO - Changing lr from 0.028 to 0.023
|
708 |
+
2022-04-07 09:19:28,266 - speechbrain.nnet.schedulers - INFO - Changing lr from 1.9e-05 to 1.7e-05
|
709 |
+
2022-04-07 09:19:28,342 - speechbrain.utils.train_logger - INFO - epoch: 30, lr_model: 2.81e-02, lr_wav2vec: 1.85e-05 - train loss: 5.01e-02 - valid loss: 5.29e-01, valid CER: 6.71, valid WER: 25.50
|
710 |
+
2022-04-07 09:21:20,512 - speechbrain.utils.checkpoints - INFO - Saved an end-of-epoch checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+09-19-28+00
|
711 |
+
2022-04-07 09:21:22,686 - speechbrain.utils.checkpoints - INFO - Deleted checkpoint in results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+09-03-47+00
|
712 |
+
2022-04-07 09:21:22,696 - speechbrain.utils.checkpoints - INFO - Loading a checkpoint from results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+09-19-28+00
|
713 |
+
2022-04-07 09:21:42,982 - root - DEBUG - SaveableDataLoader was requested to load a checkpoint, but the DataLoader has already been iterated. The DataLoader file will be ignored. This is normal in evaluation, when a checkpoint is loaded just to retrieve the best model.
|
714 |
+
2022-04-07 09:24:40,071 - speechbrain.utils.train_logger - INFO - Epoch loaded: 30 - test loss: 5.24e-01, test CER: 6.57, test WER: 24.92
|
715 |
+
2022-04-07 09:25:00,438 - speechbrain.core - INFO - Beginning experiment!
|
716 |
+
2022-04-07 09:25:00,447 - speechbrain.core - INFO - Experiment folder: results/wav2vec2_ctc_AMHARIC/1249
|
717 |
+
2022-04-07 09:25:01,071 - speechbrain.utils.superpowers - DEBUG - aiohttp==3.8.1
|
718 |
+
aiosignal==1.2.0
|
719 |
+
appdirs==1.4.4
|
720 |
+
async-timeout==4.0.2
|
721 |
+
attrs==21.4.0
|
722 |
+
audioread==2.1.9
|
723 |
+
azure-core==1.21.1
|
724 |
+
azure-storage-blob==12.9.0
|
725 |
+
bcrypt==3.2.0
|
726 |
+
black==19.10b0
|
727 |
+
certifi==2021.10.8
|
728 |
+
cffi==1.15.0
|
729 |
+
cfgv==3.3.1
|
730 |
+
charset-normalizer==2.0.10
|
731 |
+
click==8.0.3
|
732 |
+
cryptography==36.0.1
|
733 |
+
datasets==1.13.3
|
734 |
+
decorator==5.1.1
|
735 |
+
dill==0.3.4
|
736 |
+
distlib==0.3.4
|
737 |
+
entrypoints==0.3
|
738 |
+
ffmpeg==1.4
|
739 |
+
filelock==3.4.2
|
740 |
+
flake8==3.7.9
|
741 |
+
frozenlist==1.3.0
|
742 |
+
fsspec==2022.2.0
|
743 |
+
huggingface-hub==0.2.1
|
744 |
+
HyperPyYAML==1.0.0
|
745 |
+
identify==2.4.4
|
746 |
+
idna==3.3
|
747 |
+
isodate==0.6.1
|
748 |
+
joblib==1.1.0
|
749 |
+
librosa==0.8.1
|
750 |
+
llvmlite==0.38.0
|
751 |
+
mccabe==0.6.1
|
752 |
+
more-itertools==8.12.0
|
753 |
+
msrest==0.6.21
|
754 |
+
multidict==6.0.2
|
755 |
+
multiprocess==0.70.12.2
|
756 |
+
mutagen==1.45.1
|
757 |
+
nodeenv==1.6.0
|
758 |
+
numba==0.55.0
|
759 |
+
numpy==1.21.5
|
760 |
+
oauthlib==3.1.1
|
761 |
+
packaging==21.3
|
762 |
+
pandas==1.3.5
|
763 |
+
paramiko==2.10.3
|
764 |
+
pathspec==0.9.0
|
765 |
+
platformdirs==2.4.1
|
766 |
+
pluggy==0.13.1
|
767 |
+
pooch==1.5.2
|
768 |
+
pre-commit==2.17.0
|
769 |
+
py==1.11.0
|
770 |
+
pyarrow==7.0.0
|
771 |
+
pycodestyle==2.5.0
|
772 |
+
pycparser==2.21
|
773 |
+
pyflakes==2.1.1
|
774 |
+
PyNaCl==1.5.0
|
775 |
+
pyparsing==3.0.6
|
776 |
+
pytest==5.4.1
|
777 |
+
python-dateutil==2.8.2
|
778 |
+
pytz==2021.3
|
779 |
+
PyYAML==6.0
|
780 |
+
regex==2022.1.18
|
781 |
+
requests==2.27.1
|
782 |
+
requests-oauthlib==1.3.0
|
783 |
+
resampy==0.2.2
|
784 |
+
ruamel.yaml==0.17.20
|
785 |
+
ruamel.yaml.clib==0.2.6
|
786 |
+
sacremoses==0.0.47
|
787 |
+
scikit-learn==1.0.2
|
788 |
+
scipy==1.7.3
|
789 |
+
scp==0.14.4
|
790 |
+
sentencepiece==0.1.96
|
791 |
+
six==1.16.0
|
792 |
+
SoundFile==0.10.3.post1
|
793 |
+
threadpoolctl==3.0.0
|
794 |
+
tokenizers==0.10.3
|
795 |
+
toml==0.10.2
|
796 |
+
torch==1.10.1
|
797 |
+
torchaudio==0.10.1
|
798 |
+
tqdm==4.62.3
|
799 |
+
transformers==4.13.0
|
800 |
+
typed-ast==1.5.1
|
801 |
+
typing_extensions==4.0.1
|
802 |
+
urllib3==1.26.8
|
803 |
+
virtualenv==20.13.0
|
804 |
+
wcwidth==0.2.5
|
805 |
+
xxhash==3.0.0
|
806 |
+
yamllint==1.23.0
|
807 |
+
yarl==1.7.2
|
808 |
+
|
809 |
+
|
810 |
+
2022-04-07 09:25:01,407 - dvoice_prepare - INFO - results/wav2vec2_ctc_AMHARIC/1249/save/train.csv already exists, skipping data preparation!
|
811 |
+
2022-04-07 09:25:01,407 - dvoice_prepare - INFO - results/wav2vec2_ctc_AMHARIC/1249/save/dev.csv already exists, skipping data preparation!
|
812 |
+
2022-04-07 09:25:01,407 - dvoice_prepare - INFO - results/wav2vec2_ctc_AMHARIC/1249/save/test.csv already exists, skipping data preparation!
|
813 |
+
2022-04-07 09:25:01,413 - speechbrain.tokenizers.SentencePiece - INFO - Tokenizer is already trained.
|
814 |
+
2022-04-07 09:25:01,413 - speechbrain.tokenizers.SentencePiece - INFO - ==== Loading Tokenizer ===
|
815 |
+
2022-04-07 09:25:01,413 - speechbrain.tokenizers.SentencePiece - INFO - Tokenizer path: results/wav2vec2_ctc_AMHARIC/1249/save/224_char.model
|
816 |
+
2022-04-07 09:25:01,413 - speechbrain.tokenizers.SentencePiece - INFO - Tokenizer vocab_size: 224
|
817 |
+
2022-04-07 09:25:01,413 - speechbrain.tokenizers.SentencePiece - INFO - Tokenizer type: char
|
818 |
+
2022-04-07 09:25:01,591 - speechbrain.core - INFO - Info: auto_mix_prec arg from hparam file is used
|
819 |
+
2022-04-07 09:25:01,591 - speechbrain.core - INFO - Info: ckpt_interval_minutes arg from hparam file is used
|
820 |
+
2022-04-07 09:25:05,095 - speechbrain.core - INFO - 318.8M trainable parameters in ASR
|
821 |
+
2022-04-07 09:25:05,382 - speechbrain.utils.checkpoints - INFO - Loading a checkpoint from results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+09-19-28+00
|
822 |
+
2022-04-07 09:25:08,583 - speechbrain.utils.checkpoints - INFO - Loading a checkpoint from results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+09-19-28+00
|
823 |
+
2022-04-07 09:26:16,796 - speechbrain.utils.train_logger - INFO - Epoch loaded: 30 - test loss: 5.24e-01, test CER: 6.57, test WER: 24.92
|
824 |
+
2022-05-27 08:17:50,151 - speechbrain.core - INFO - Beginning experiment!
|
825 |
+
2022-05-27 08:17:50,151 - speechbrain.core - INFO - Experiment folder: results/wav2vec2_ctc_AMHARIC/1249
|
826 |
+
2022-05-27 08:17:54,273 - speechbrain.utils.superpowers - DEBUG - aiohttp==3.8.1
|
827 |
+
aiosignal==1.2.0
|
828 |
+
appdirs==1.4.4
|
829 |
+
async-timeout==4.0.2
|
830 |
+
attrs==21.4.0
|
831 |
+
audioread==2.1.9
|
832 |
+
audiosegment==0.23.0
|
833 |
+
azure-core==1.21.1
|
834 |
+
azure-storage-blob==12.9.0
|
835 |
+
bcrypt==3.2.0
|
836 |
+
black==19.10b0
|
837 |
+
certifi==2021.10.8
|
838 |
+
cffi==1.15.0
|
839 |
+
cfgv==3.3.1
|
840 |
+
charset-normalizer==2.0.10
|
841 |
+
click==8.0.3
|
842 |
+
cryptography==36.0.1
|
843 |
+
datasets==1.13.3
|
844 |
+
decorator==5.1.1
|
845 |
+
dill==0.3.4
|
846 |
+
distlib==0.3.4
|
847 |
+
entrypoints==0.3
|
848 |
+
ffmpeg==1.4
|
849 |
+
filelock==3.4.2
|
850 |
+
flake8==3.7.9
|
851 |
+
frozenlist==1.3.0
|
852 |
+
fsspec==2022.2.0
|
853 |
+
huggingface-hub==0.5.1
|
854 |
+
HyperPyYAML==1.0.1
|
855 |
+
identify==2.4.4
|
856 |
+
idna==3.3
|
857 |
+
isodate==0.6.1
|
858 |
+
joblib==1.1.0
|
859 |
+
librosa==0.8.1
|
860 |
+
llvmlite==0.38.0
|
861 |
+
mccabe==0.6.1
|
862 |
+
more-itertools==8.12.0
|
863 |
+
msrest==0.6.21
|
864 |
+
multidict==6.0.2
|
865 |
+
multiprocess==0.70.12.2
|
866 |
+
mutagen==1.45.1
|
867 |
+
nodeenv==1.6.0
|
868 |
+
numba==0.55.0
|
869 |
+
numpy==1.21.5
|
870 |
+
oauthlib==3.1.1
|
871 |
+
packaging==21.3
|
872 |
+
pandas==1.3.5
|
873 |
+
paramiko==2.10.3
|
874 |
+
pathspec==0.9.0
|
875 |
+
platformdirs==2.4.1
|
876 |
+
pluggy==0.13.1
|
877 |
+
pooch==1.5.2
|
878 |
+
pre-commit==2.17.0
|
879 |
+
py==1.11.0
|
880 |
+
pyarrow==7.0.0
|
881 |
+
pycodestyle==2.5.0
|
882 |
+
pycparser==2.21
|
883 |
+
pydub==0.25.1
|
884 |
+
pyflakes==2.1.1
|
885 |
+
PyNaCl==1.5.0
|
886 |
+
pyparsing==3.0.6
|
887 |
+
pytest==5.4.1
|
888 |
+
python-dateutil==2.8.2
|
889 |
+
pytz==2021.3
|
890 |
+
PyYAML==6.0
|
891 |
+
regex==2022.1.18
|
892 |
+
requests==2.27.1
|
893 |
+
requests-oauthlib==1.3.0
|
894 |
+
resampy==0.2.2
|
895 |
+
ruamel.yaml==0.17.21
|
896 |
+
ruamel.yaml.clib==0.2.6
|
897 |
+
sacremoses==0.0.53
|
898 |
+
scikit-learn==1.0.2
|
899 |
+
scipy==1.7.3
|
900 |
+
scp==0.14.4
|
901 |
+
sentencepiece==0.1.96
|
902 |
+
six==1.16.0
|
903 |
+
SoundFile==0.10.3.post1
|
904 |
+
speechbrain==0.5.11
|
905 |
+
threadpoolctl==3.0.0
|
906 |
+
tokenizers==0.12.1
|
907 |
+
toml==0.10.2
|
908 |
+
torch==1.11.0
|
909 |
+
torchaudio==0.11.0
|
910 |
+
tqdm==4.62.3
|
911 |
+
transformers==4.18.0
|
912 |
+
typed-ast==1.5.1
|
913 |
+
typing_extensions==4.0.1
|
914 |
+
urllib3==1.26.8
|
915 |
+
virtualenv==20.13.0
|
916 |
+
wcwidth==0.2.5
|
917 |
+
webrtcvad==2.0.10
|
918 |
+
xxhash==3.0.0
|
919 |
+
yamllint==1.23.0
|
920 |
+
yarl==1.7.2
|
921 |
+
youtube-dl==2021.12.17
|
922 |
+
|
923 |
+
|
924 |
+
2022-05-27 08:19:01,150 - dvoice_prepare - INFO - results/wav2vec2_ctc_AMHARIC/1249/save/train.csv already exists, skipping data preparation!
|
925 |
+
2022-05-27 08:19:01,151 - dvoice_prepare - INFO - results/wav2vec2_ctc_AMHARIC/1249/save/dev.csv already exists, skipping data preparation!
|
926 |
+
2022-05-27 08:19:01,151 - dvoice_prepare - INFO - results/wav2vec2_ctc_AMHARIC/1249/save/test.csv already exists, skipping data preparation!
|
927 |
+
2022-05-27 08:19:01,160 - speechbrain.tokenizers.SentencePiece - INFO - Tokenizer is already trained.
|
928 |
+
2022-05-27 08:19:01,160 - speechbrain.tokenizers.SentencePiece - INFO - ==== Loading Tokenizer ===
|
929 |
+
2022-05-27 08:19:01,160 - speechbrain.tokenizers.SentencePiece - INFO - Tokenizer path: results/wav2vec2_ctc_AMHARIC/1249/save/224_char.model
|
930 |
+
2022-05-27 08:19:01,160 - speechbrain.tokenizers.SentencePiece - INFO - Tokenizer vocab_size: 224
|
931 |
+
2022-05-27 08:19:01,160 - speechbrain.tokenizers.SentencePiece - INFO - Tokenizer type: char
|
932 |
+
2022-05-27 08:19:01,425 - speechbrain.core - INFO - Info: auto_mix_prec arg from hparam file is used
|
933 |
+
2022-05-27 08:19:01,425 - speechbrain.core - INFO - Info: ckpt_interval_minutes arg from hparam file is used
|
934 |
+
2022-05-27 08:19:09,868 - speechbrain.core - INFO - 318.8M trainable parameters in ASR
|
935 |
+
2022-05-27 08:19:09,899 - speechbrain.utils.checkpoints - INFO - Loading a checkpoint from results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+09-19-28+00
|
936 |
+
2022-05-27 08:20:01,646 - speechbrain.utils.checkpoints - INFO - Loading a checkpoint from results/wav2vec2_ctc_AMHARIC/1249/save/CKPT+2022-04-07+09-19-28+00
|
937 |
+
2022-05-27 08:20:59,252 - speechbrain.utils.train_logger - INFO - Epoch loaded: 30 - test loss: 5.24e-01, test CER: 6.57, test WER: 24.92
|
Training/train.py
ADDED
@@ -0,0 +1,380 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import sys
|
3 |
+
|
4 |
+
|
5 |
+
|
6 |
+
sys.path
|
7 |
+
sys.path.append('/data/n.abdoumohamed/DVoice/speechbrain')
|
8 |
+
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import logging
|
12 |
+
import speechbrain as sb
|
13 |
+
import torchaudio
|
14 |
+
from hyperpyyaml import load_hyperpyyaml
|
15 |
+
from speechbrain.tokenizers.SentencePiece import SentencePiece
|
16 |
+
from speechbrain.utils.data_utils import undo_padding
|
17 |
+
from speechbrain.utils.distributed import run_on_main
|
18 |
+
|
19 |
+
"""Recipe for training a sequence-to-sequence ASR system with CommonVoice.
|
20 |
+
The system employs a wav2vec2 encoder and a CTC decoder.
|
21 |
+
Decoding is performed with greedy decoding (will be extended to beam search).
|
22 |
+
|
23 |
+
To run this recipe, do the following:
|
24 |
+
> python train_with_wav2vec2.py hparams/train_with_wav2vec2.yaml
|
25 |
+
|
26 |
+
With the default hyperparameters, the system employs a pretrained wav2vec2 encoder.
|
27 |
+
The wav2vec2 model is pretrained following the model given in the hprams file.
|
28 |
+
It may be dependent on the language.
|
29 |
+
|
30 |
+
The neural network is trained with CTC on sub-word units estimated with
|
31 |
+
Byte Pairwise Encoding (BPE).
|
32 |
+
|
33 |
+
The experiment file is flexible enough to support a large variety of
|
34 |
+
different systems. By properly changing the parameter files, you can try
|
35 |
+
different encoders, decoders, tokens (e.g, characters instead of BPE),
|
36 |
+
training languages (all CommonVoice languages), and many
|
37 |
+
other possible variations.
|
38 |
+
|
39 |
+
Authors
|
40 |
+
* Titouan Parcollet 2021
|
41 |
+
"""
|
42 |
+
|
43 |
+
logger = logging.getLogger(__name__)
|
44 |
+
|
45 |
+
|
46 |
+
# Define training procedure
|
47 |
+
class ASR(sb.core.Brain):
|
48 |
+
def compute_forward(self, batch, stage):
|
49 |
+
"""Forward computations from the waveform batches to the output probabilities."""
|
50 |
+
|
51 |
+
batch = batch.to(self.device)
|
52 |
+
wavs, wav_lens = batch.sig
|
53 |
+
tokens_bos, _ = batch.tokens_bos
|
54 |
+
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
|
55 |
+
|
56 |
+
if stage == sb.Stage.TRAIN:
|
57 |
+
if hasattr(self.hparams, "augmentation"):
|
58 |
+
wavs = self.hparams.augmentation(wavs, wav_lens)
|
59 |
+
|
60 |
+
# Forward pass
|
61 |
+
feats = self.modules.wav2vec2(wavs)
|
62 |
+
x = self.modules.enc(feats)
|
63 |
+
logits = self.modules.ctc_lin(x)
|
64 |
+
p_ctc = self.hparams.log_softmax(logits)
|
65 |
+
|
66 |
+
return p_ctc, wav_lens
|
67 |
+
|
68 |
+
def compute_objectives(self, predictions, batch, stage):
|
69 |
+
"""Computes the loss (CTC) given predictions and targets."""
|
70 |
+
|
71 |
+
p_ctc, wav_lens = predictions
|
72 |
+
|
73 |
+
ids = batch.id
|
74 |
+
tokens_eos, tokens_eos_lens = batch.tokens_eos
|
75 |
+
tokens, tokens_lens = batch.tokens
|
76 |
+
|
77 |
+
loss = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens)
|
78 |
+
|
79 |
+
if stage != sb.Stage.TRAIN:
|
80 |
+
# Decode token terms to words
|
81 |
+
sequence = sb.decoders.ctc_greedy_decode(
|
82 |
+
p_ctc, wav_lens, blank_id=self.hparams.blank_index
|
83 |
+
)
|
84 |
+
|
85 |
+
predicted_words = self.tokenizer(sequence, task="decode_from_list")
|
86 |
+
|
87 |
+
# Convert indices to words
|
88 |
+
target_words = undo_padding(tokens, tokens_lens)
|
89 |
+
target_words = self.tokenizer(target_words, task="decode_from_list")
|
90 |
+
|
91 |
+
self.wer_metric.append(ids, predicted_words, target_words)
|
92 |
+
self.cer_metric.append(ids, predicted_words, target_words)
|
93 |
+
|
94 |
+
return loss
|
95 |
+
|
96 |
+
def fit_batch(self, batch):
|
97 |
+
"""Train the parameters given a single batch in input"""
|
98 |
+
if self.auto_mix_prec:
|
99 |
+
|
100 |
+
if not self.hparams.wav2vec2.freeze:
|
101 |
+
self.wav2vec_optimizer.zero_grad()
|
102 |
+
self.model_optimizer.zero_grad()
|
103 |
+
|
104 |
+
with torch.cuda.amp.autocast():
|
105 |
+
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
|
106 |
+
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
|
107 |
+
|
108 |
+
self.scaler.scale(loss).backward()
|
109 |
+
if not self.hparams.wav2vec2.freeze:
|
110 |
+
self.scaler.unscale_(self.wav2vec_optimizer)
|
111 |
+
self.scaler.unscale_(self.model_optimizer)
|
112 |
+
|
113 |
+
if self.check_gradients(loss):
|
114 |
+
if not self.hparams.wav2vec2.freeze:
|
115 |
+
self.scaler.step(self.wav2vec_optimizer)
|
116 |
+
self.scaler.step(self.model_optimizer)
|
117 |
+
|
118 |
+
self.scaler.update()
|
119 |
+
else:
|
120 |
+
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
|
121 |
+
|
122 |
+
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
|
123 |
+
loss.backward()
|
124 |
+
|
125 |
+
if self.check_gradients(loss):
|
126 |
+
if not self.hparams.wav2vec2.freeze:
|
127 |
+
self.wav2vec_optimizer.step()
|
128 |
+
self.model_optimizer.step()
|
129 |
+
|
130 |
+
if not self.hparams.wav2vec2.freeze:
|
131 |
+
self.wav2vec_optimizer.zero_grad()
|
132 |
+
self.model_optimizer.zero_grad()
|
133 |
+
|
134 |
+
return loss.detach()
|
135 |
+
|
136 |
+
def evaluate_batch(self, batch, stage):
|
137 |
+
"""Computations needed for validation/test batches"""
|
138 |
+
predictions = self.compute_forward(batch, stage=stage)
|
139 |
+
with torch.no_grad():
|
140 |
+
loss = self.compute_objectives(predictions, batch, stage=stage)
|
141 |
+
return loss.detach()
|
142 |
+
|
143 |
+
def on_stage_start(self, stage, epoch):
|
144 |
+
"""Gets called at the beginning of each epoch"""
|
145 |
+
if stage != sb.Stage.TRAIN:
|
146 |
+
self.cer_metric = self.hparams.cer_computer()
|
147 |
+
self.wer_metric = self.hparams.error_rate_computer()
|
148 |
+
|
149 |
+
def on_stage_end(self, stage, stage_loss, epoch):
|
150 |
+
"""Gets called at the end of an epoch."""
|
151 |
+
# Compute/store important stats
|
152 |
+
stage_stats = {"loss": stage_loss}
|
153 |
+
if stage == sb.Stage.TRAIN:
|
154 |
+
self.train_stats = stage_stats
|
155 |
+
else:
|
156 |
+
stage_stats["CER"] = self.cer_metric.summarize("error_rate")
|
157 |
+
stage_stats["WER"] = self.wer_metric.summarize("error_rate")
|
158 |
+
|
159 |
+
# Perform end-of-iteration things, like annealing, logging, etc.
|
160 |
+
if stage == sb.Stage.VALID:
|
161 |
+
old_lr_model, new_lr_model = self.hparams.lr_annealing_model(
|
162 |
+
stage_stats["loss"]
|
163 |
+
)
|
164 |
+
old_lr_wav2vec, new_lr_wav2vec = self.hparams.lr_annealing_wav2vec(
|
165 |
+
stage_stats["loss"]
|
166 |
+
)
|
167 |
+
sb.nnet.schedulers.update_learning_rate(
|
168 |
+
self.model_optimizer, new_lr_model
|
169 |
+
)
|
170 |
+
if not self.hparams.wav2vec2.freeze:
|
171 |
+
sb.nnet.schedulers.update_learning_rate(
|
172 |
+
self.wav2vec_optimizer, new_lr_wav2vec
|
173 |
+
)
|
174 |
+
self.hparams.train_logger.log_stats(
|
175 |
+
stats_meta={
|
176 |
+
"epoch": epoch,
|
177 |
+
"lr_model": old_lr_model,
|
178 |
+
"lr_wav2vec": old_lr_wav2vec,
|
179 |
+
},
|
180 |
+
train_stats=self.train_stats,
|
181 |
+
valid_stats=stage_stats,
|
182 |
+
)
|
183 |
+
self.checkpointer.save_and_keep_only(
|
184 |
+
meta={"WER": stage_stats["WER"]}, min_keys=["WER"],
|
185 |
+
)
|
186 |
+
elif stage == sb.Stage.TEST:
|
187 |
+
self.hparams.train_logger.log_stats(
|
188 |
+
stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
|
189 |
+
test_stats=stage_stats,
|
190 |
+
)
|
191 |
+
with open(self.hparams.wer_file, "w") as w:
|
192 |
+
self.wer_metric.write_stats(w)
|
193 |
+
|
194 |
+
def init_optimizers(self):
|
195 |
+
"Initializes the wav2vec2 optimizer and model optimizer"
|
196 |
+
|
197 |
+
# If the wav2vec encoder is unfrozen, we create the optimizer
|
198 |
+
if not self.hparams.wav2vec2.freeze:
|
199 |
+
self.wav2vec_optimizer = self.hparams.wav2vec_opt_class(
|
200 |
+
self.modules.wav2vec2.parameters()
|
201 |
+
)
|
202 |
+
if self.checkpointer is not None:
|
203 |
+
self.checkpointer.add_recoverable(
|
204 |
+
"wav2vec_opt", self.wav2vec_optimizer
|
205 |
+
)
|
206 |
+
|
207 |
+
self.model_optimizer = self.hparams.model_opt_class(
|
208 |
+
self.hparams.model.parameters()
|
209 |
+
)
|
210 |
+
|
211 |
+
if self.checkpointer is not None:
|
212 |
+
self.checkpointer.add_recoverable("modelopt", self.model_optimizer)
|
213 |
+
|
214 |
+
|
215 |
+
# Define custom data procedure
|
216 |
+
def dataio_prepare(hparams, tokenizer):
|
217 |
+
"""This function prepares the datasets to be used in the brain class.
|
218 |
+
It also defines the data processing pipeline through user-defined functions."""
|
219 |
+
|
220 |
+
# 1. Define datasets
|
221 |
+
data_folder = hparams["data_folder"]
|
222 |
+
|
223 |
+
train_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
|
224 |
+
csv_path=hparams["train_csv"], replacements={"data_root": data_folder},
|
225 |
+
)
|
226 |
+
|
227 |
+
if hparams["sorting"] == "ascending":
|
228 |
+
# we sort training data to speed up training and get better results.
|
229 |
+
train_data = train_data.filtered_sorted(
|
230 |
+
sort_key="duration",
|
231 |
+
key_max_value={"duration": hparams["avoid_if_longer_than"]},
|
232 |
+
)
|
233 |
+
# when sorting do not shuffle in dataloader ! otherwise is pointless
|
234 |
+
hparams["dataloader_options"]["shuffle"] = False
|
235 |
+
|
236 |
+
elif hparams["sorting"] == "descending":
|
237 |
+
train_data = train_data.filtered_sorted(
|
238 |
+
sort_key="duration",
|
239 |
+
reverse=True,
|
240 |
+
key_max_value={"duration": hparams["avoid_if_longer_than"]},
|
241 |
+
)
|
242 |
+
# when sorting do not shuffle in dataloader ! otherwise is pointless
|
243 |
+
hparams["dataloader_options"]["shuffle"] = False
|
244 |
+
|
245 |
+
elif hparams["sorting"] == "random":
|
246 |
+
pass
|
247 |
+
|
248 |
+
else:
|
249 |
+
raise NotImplementedError(
|
250 |
+
"sorting must be random, ascending or descending"
|
251 |
+
)
|
252 |
+
|
253 |
+
valid_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
|
254 |
+
csv_path=hparams["valid_csv"], replacements={"data_root": data_folder},
|
255 |
+
)
|
256 |
+
# We also sort the validation data so it is faster to validate
|
257 |
+
valid_data = valid_data.filtered_sorted(sort_key="duration")
|
258 |
+
|
259 |
+
test_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
|
260 |
+
csv_path=hparams["test_csv"], replacements={"data_root": data_folder},
|
261 |
+
)
|
262 |
+
|
263 |
+
# We also sort the validation data so it is faster to validate
|
264 |
+
test_data = test_data.filtered_sorted(sort_key="duration")
|
265 |
+
|
266 |
+
datasets = [train_data, valid_data, test_data]
|
267 |
+
|
268 |
+
# 2. Define audio pipeline:
|
269 |
+
@sb.utils.data_pipeline.takes("wav")
|
270 |
+
@sb.utils.data_pipeline.provides("sig")
|
271 |
+
def audio_pipeline(wav):
|
272 |
+
info = torchaudio.info(wav)
|
273 |
+
sig = sb.dataio.dataio.read_audio(wav)
|
274 |
+
resampled = torchaudio.transforms.Resample(
|
275 |
+
info.sample_rate, hparams["sample_rate"],
|
276 |
+
)(sig)
|
277 |
+
return resampled
|
278 |
+
|
279 |
+
sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline)
|
280 |
+
|
281 |
+
# 3. Define text pipeline:
|
282 |
+
@sb.utils.data_pipeline.takes("wrd")
|
283 |
+
@sb.utils.data_pipeline.provides(
|
284 |
+
"tokens_list", "tokens_bos", "tokens_eos", "tokens"
|
285 |
+
)
|
286 |
+
def text_pipeline(wrd):
|
287 |
+
tokens_list = tokenizer.sp.encode_as_ids(wrd)
|
288 |
+
yield tokens_list
|
289 |
+
tokens_bos = torch.LongTensor([hparams["bos_index"]] + (tokens_list))
|
290 |
+
yield tokens_bos
|
291 |
+
tokens_eos = torch.LongTensor(tokens_list + [hparams["eos_index"]])
|
292 |
+
yield tokens_eos
|
293 |
+
tokens = torch.LongTensor(tokens_list)
|
294 |
+
yield tokens
|
295 |
+
|
296 |
+
sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline)
|
297 |
+
|
298 |
+
# 4. Set output:
|
299 |
+
sb.dataio.dataset.set_output_keys(
|
300 |
+
datasets, ["id", "sig", "tokens_bos", "tokens_eos", "tokens"],
|
301 |
+
)
|
302 |
+
return train_data, valid_data, test_data
|
303 |
+
|
304 |
+
|
305 |
+
if __name__ == "__main__":
|
306 |
+
|
307 |
+
# Load hyperparameters file with command-line overrides
|
308 |
+
hparams_file, run_opts, overrides = sb.parse_arguments(sys.argv[1:])
|
309 |
+
with open(hparams_file) as fin:
|
310 |
+
hparams = load_hyperpyyaml(fin, overrides)
|
311 |
+
|
312 |
+
# If distributed_launch=True then
|
313 |
+
# create ddp_group with the right communication protocol
|
314 |
+
sb.utils.distributed.ddp_init_group(run_opts)
|
315 |
+
|
316 |
+
# Dataset preparation (parsing CommonVoice)
|
317 |
+
from dvoice_prepare import prepare_dvoice # noqa
|
318 |
+
|
319 |
+
# Create experiment directory
|
320 |
+
sb.create_experiment_directory(
|
321 |
+
experiment_directory=hparams["output_folder"],
|
322 |
+
hyperparams_to_save=hparams_file,
|
323 |
+
overrides=overrides,
|
324 |
+
)
|
325 |
+
|
326 |
+
# Due to DDP, we do the preparation ONLY on the main python process
|
327 |
+
run_on_main(
|
328 |
+
prepare_dvoice,
|
329 |
+
kwargs={
|
330 |
+
"data_folder": hparams["data_folder"],
|
331 |
+
"save_folder": hparams["save_folder"],
|
332 |
+
"train_csv_file": hparams["train_csv_file"],
|
333 |
+
"dev_csv_file": hparams["dev_csv_file"],
|
334 |
+
"test_csv_file": hparams["test_csv_file"],
|
335 |
+
"accented_letters": hparams["accented_letters"],
|
336 |
+
"language": hparams["language"],
|
337 |
+
"skip_prep": hparams["skip_prep"],
|
338 |
+
},
|
339 |
+
)
|
340 |
+
|
341 |
+
# Defining tokenizer and loading it
|
342 |
+
tokenizer = SentencePiece(
|
343 |
+
model_dir=hparams["save_folder"],
|
344 |
+
vocab_size=hparams["output_neurons"],
|
345 |
+
annotation_train=hparams["train_csv"],
|
346 |
+
annotation_read="wrd",
|
347 |
+
model_type=hparams["token_type"],
|
348 |
+
character_coverage=hparams["character_coverage"],
|
349 |
+
)
|
350 |
+
|
351 |
+
# Create the datasets objects as well as tokenization and encoding :-D
|
352 |
+
train_data, valid_data, test_data = dataio_prepare(hparams, tokenizer)
|
353 |
+
|
354 |
+
# Trainer initialization
|
355 |
+
asr_brain = ASR(
|
356 |
+
modules=hparams["modules"],
|
357 |
+
hparams=hparams,
|
358 |
+
run_opts=run_opts,
|
359 |
+
checkpointer=hparams["checkpointer"],
|
360 |
+
)
|
361 |
+
|
362 |
+
# Adding objects to trainer.
|
363 |
+
asr_brain.tokenizer = tokenizer
|
364 |
+
|
365 |
+
# Training
|
366 |
+
asr_brain.fit(
|
367 |
+
asr_brain.hparams.epoch_counter,
|
368 |
+
train_data,
|
369 |
+
valid_data,
|
370 |
+
train_loader_kwargs=hparams["dataloader_options"],
|
371 |
+
valid_loader_kwargs=hparams["test_dataloader_options"],
|
372 |
+
)
|
373 |
+
|
374 |
+
# Test
|
375 |
+
asr_brain.hparams.wer_file = hparams["output_folder"] + "/wer_test.txt"
|
376 |
+
asr_brain.evaluate(
|
377 |
+
test_data,
|
378 |
+
min_key="WER",
|
379 |
+
test_loader_kwargs=hparams["test_dataloader_options"],
|
380 |
+
)
|
Training/train2.py
ADDED
@@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import torch
|
3 |
+
import logging
|
4 |
+
import speechbrain as sb
|
5 |
+
import torchaudio
|
6 |
+
from hyperpyyaml import load_hyperpyyaml
|
7 |
+
from speechbrain.tokenizers.SentencePiece import SentencePiece
|
8 |
+
from speechbrain.utils.data_utils import undo_padding
|
9 |
+
from speechbrain.utils.distributed import run_on_main
|
10 |
+
|
11 |
+
"""Recipe for training a sequence-to-sequence ASR system with CommonVoice.
|
12 |
+
The system employs a wav2vec2 encoder and a CTC decoder.
|
13 |
+
Decoding is performed with greedy decoding (will be extended to beam search).
|
14 |
+
|
15 |
+
To run this recipe, do the following:
|
16 |
+
> python train_with_wav2vec2.py hparams/train_with_wav2vec2.yaml
|
17 |
+
|
18 |
+
With the default hyperparameters, the system employs a pretrained wav2vec2 encoder.
|
19 |
+
The wav2vec2 model is pretrained following the model given in the hprams file.
|
20 |
+
It may be dependent on the language.
|
21 |
+
|
22 |
+
The neural network is trained with CTC on sub-word units estimated with
|
23 |
+
Byte Pairwise Encoding (BPE).
|
24 |
+
|
25 |
+
The experiment file is flexible enough to support a large variety of
|
26 |
+
different systems. By properly changing the parameter files, you can try
|
27 |
+
different encoders, decoders, tokens (e.g, characters instead of BPE),
|
28 |
+
training languages (all CommonVoice languages), and many
|
29 |
+
other possible variations.
|
30 |
+
|
31 |
+
Authors
|
32 |
+
* Titouan Parcollet 2021
|
33 |
+
"""
|
34 |
+
|
35 |
+
logger = logging.getLogger(__name__)
|
36 |
+
|
37 |
+
|
38 |
+
# Define training procedure
|
39 |
+
class ASR(sb.core.Brain):
|
40 |
+
def compute_forward(self, batch, stage):
|
41 |
+
"""Forward computations from the waveform batches to the output probabilities."""
|
42 |
+
|
43 |
+
batch = batch.to(self.device)
|
44 |
+
wavs, wav_lens = batch.sig
|
45 |
+
tokens_bos, _ = batch.tokens_bos
|
46 |
+
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
|
47 |
+
|
48 |
+
if stage == sb.Stage.TRAIN:
|
49 |
+
if hasattr(self.hparams, "augmentation"):
|
50 |
+
wavs = self.hparams.augmentation(wavs, wav_lens)
|
51 |
+
|
52 |
+
# Forward pass
|
53 |
+
feats = self.modules.wav2vec2(wavs)
|
54 |
+
x = self.modules.enc(feats)
|
55 |
+
logits = self.modules.ctc_lin(x)
|
56 |
+
p_ctc = self.hparams.log_softmax(logits)
|
57 |
+
|
58 |
+
return p_ctc, wav_lens
|
59 |
+
|
60 |
+
def compute_objectives(self, predictions, batch, stage):
|
61 |
+
"""Computes the loss (CTC) given predictions and targets."""
|
62 |
+
|
63 |
+
p_ctc, wav_lens = predictions
|
64 |
+
|
65 |
+
ids = batch.id
|
66 |
+
tokens_eos, tokens_eos_lens = batch.tokens_eos
|
67 |
+
tokens, tokens_lens = batch.tokens
|
68 |
+
|
69 |
+
loss = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens)
|
70 |
+
|
71 |
+
if stage != sb.Stage.TRAIN:
|
72 |
+
# Decode token terms to words
|
73 |
+
sequence = sb.decoders.ctc_greedy_decode(
|
74 |
+
p_ctc, wav_lens, blank_id=self.hparams.blank_index
|
75 |
+
)
|
76 |
+
|
77 |
+
predicted_words = self.tokenizer(sequence, task="decode_from_list")
|
78 |
+
|
79 |
+
# Convert indices to words
|
80 |
+
target_words = undo_padding(tokens, tokens_lens)
|
81 |
+
target_words = self.tokenizer(target_words, task="decode_from_list")
|
82 |
+
|
83 |
+
self.wer_metric.append(ids, predicted_words, target_words)
|
84 |
+
self.cer_metric.append(ids, predicted_words, target_words)
|
85 |
+
|
86 |
+
return loss
|
87 |
+
|
88 |
+
def fit_batch(self, batch):
|
89 |
+
"""Train the parameters given a single batch in input"""
|
90 |
+
if self.auto_mix_prec:
|
91 |
+
|
92 |
+
if not self.hparams.wav2vec2.freeze:
|
93 |
+
self.wav2vec_optimizer.zero_grad()
|
94 |
+
self.model_optimizer.zero_grad()
|
95 |
+
|
96 |
+
with torch.cuda.amp.autocast():
|
97 |
+
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
|
98 |
+
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
|
99 |
+
|
100 |
+
self.scaler.scale(loss).backward()
|
101 |
+
if not self.hparams.wav2vec2.freeze:
|
102 |
+
self.scaler.unscale_(self.wav2vec_optimizer)
|
103 |
+
self.scaler.unscale_(self.model_optimizer)
|
104 |
+
|
105 |
+
if self.check_gradients(loss):
|
106 |
+
if not self.hparams.wav2vec2.freeze:
|
107 |
+
self.scaler.step(self.wav2vec_optimizer)
|
108 |
+
self.scaler.step(self.model_optimizer)
|
109 |
+
|
110 |
+
self.scaler.update()
|
111 |
+
else:
|
112 |
+
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
|
113 |
+
|
114 |
+
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
|
115 |
+
loss.backward()
|
116 |
+
|
117 |
+
if self.check_gradients(loss):
|
118 |
+
if not self.hparams.wav2vec2.freeze:
|
119 |
+
self.wav2vec_optimizer.step()
|
120 |
+
self.model_optimizer.step()
|
121 |
+
|
122 |
+
if not self.hparams.wav2vec2.freeze:
|
123 |
+
self.wav2vec_optimizer.zero_grad()
|
124 |
+
self.model_optimizer.zero_grad()
|
125 |
+
|
126 |
+
return loss.detach()
|
127 |
+
|
128 |
+
def evaluate_batch(self, batch, stage):
|
129 |
+
"""Computations needed for validation/test batches"""
|
130 |
+
predictions = self.compute_forward(batch, stage=stage)
|
131 |
+
with torch.no_grad():
|
132 |
+
loss = self.compute_objectives(predictions, batch, stage=stage)
|
133 |
+
return loss.detach()
|
134 |
+
|
135 |
+
def on_stage_start(self, stage, epoch):
|
136 |
+
"""Gets called at the beginning of each epoch"""
|
137 |
+
if stage != sb.Stage.TRAIN:
|
138 |
+
self.cer_metric = self.hparams.cer_computer()
|
139 |
+
self.wer_metric = self.hparams.error_rate_computer()
|
140 |
+
|
141 |
+
def on_stage_end(self, stage, stage_loss, epoch):
|
142 |
+
"""Gets called at the end of an epoch."""
|
143 |
+
# Compute/store important stats
|
144 |
+
stage_stats = {"loss": stage_loss}
|
145 |
+
if stage == sb.Stage.TRAIN:
|
146 |
+
self.train_stats = stage_stats
|
147 |
+
else:
|
148 |
+
stage_stats["CER"] = self.cer_metric.summarize("error_rate")
|
149 |
+
stage_stats["WER"] = self.wer_metric.summarize("error_rate")
|
150 |
+
|
151 |
+
# Perform end-of-iteration things, like annealing, logging, etc.
|
152 |
+
if stage == sb.Stage.VALID:
|
153 |
+
old_lr_model, new_lr_model = self.hparams.lr_annealing_model(
|
154 |
+
stage_stats["loss"]
|
155 |
+
)
|
156 |
+
old_lr_wav2vec, new_lr_wav2vec = self.hparams.lr_annealing_wav2vec(
|
157 |
+
stage_stats["loss"]
|
158 |
+
)
|
159 |
+
sb.nnet.schedulers.update_learning_rate(
|
160 |
+
self.model_optimizer, new_lr_model
|
161 |
+
)
|
162 |
+
if not self.hparams.wav2vec2.freeze:
|
163 |
+
sb.nnet.schedulers.update_learning_rate(
|
164 |
+
self.wav2vec_optimizer, new_lr_wav2vec
|
165 |
+
)
|
166 |
+
self.hparams.train_logger.log_stats(
|
167 |
+
stats_meta={
|
168 |
+
"epoch": epoch,
|
169 |
+
"lr_model": old_lr_model,
|
170 |
+
"lr_wav2vec": old_lr_wav2vec,
|
171 |
+
},
|
172 |
+
train_stats=self.train_stats,
|
173 |
+
valid_stats=stage_stats,
|
174 |
+
)
|
175 |
+
self.checkpointer.save_and_keep_only(
|
176 |
+
meta={"WER": stage_stats["WER"]}, min_keys=["WER"],
|
177 |
+
)
|
178 |
+
elif stage == sb.Stage.TEST:
|
179 |
+
self.hparams.train_logger.log_stats(
|
180 |
+
stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
|
181 |
+
test_stats=stage_stats,
|
182 |
+
)
|
183 |
+
with open(self.hparams.wer_file, "w") as w:
|
184 |
+
self.wer_metric.write_stats(w)
|
185 |
+
|
186 |
+
def init_optimizers(self):
|
187 |
+
"Initializes the wav2vec2 optimizer and model optimizer"
|
188 |
+
|
189 |
+
# If the wav2vec encoder is unfrozen, we create the optimizer
|
190 |
+
if not self.hparams.wav2vec2.freeze:
|
191 |
+
self.wav2vec_optimizer = self.hparams.wav2vec_opt_class(
|
192 |
+
self.modules.wav2vec2.parameters()
|
193 |
+
)
|
194 |
+
if self.checkpointer is not None:
|
195 |
+
self.checkpointer.add_recoverable(
|
196 |
+
"wav2vec_opt", self.wav2vec_optimizer
|
197 |
+
)
|
198 |
+
|
199 |
+
self.model_optimizer = self.hparams.model_opt_class(
|
200 |
+
self.hparams.model.parameters()
|
201 |
+
)
|
202 |
+
|
203 |
+
if self.checkpointer is not None:
|
204 |
+
self.checkpointer.add_recoverable("modelopt", self.model_optimizer)
|
205 |
+
|
206 |
+
|
207 |
+
# Define custom data procedure
|
208 |
+
def dataio_prepare(hparams, tokenizer):
|
209 |
+
"""This function prepares the datasets to be used in the brain class.
|
210 |
+
It also defines the data processing pipeline through user-defined functions."""
|
211 |
+
|
212 |
+
# 1. Define datasets
|
213 |
+
data_folder = hparams["data_folder"]
|
214 |
+
|
215 |
+
train_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
|
216 |
+
csv_path=hparams["train_csv"], replacements={"data_root": data_folder},
|
217 |
+
)
|
218 |
+
|
219 |
+
if hparams["sorting"] == "ascending":
|
220 |
+
# we sort training data to speed up training and get better results.
|
221 |
+
train_data = train_data.filtered_sorted(
|
222 |
+
sort_key="duration",
|
223 |
+
key_max_value={"duration": hparams["avoid_if_longer_than"]},
|
224 |
+
)
|
225 |
+
# when sorting do not shuffle in dataloader ! otherwise is pointless
|
226 |
+
hparams["dataloader_options"]["shuffle"] = False
|
227 |
+
|
228 |
+
elif hparams["sorting"] == "descending":
|
229 |
+
train_data = train_data.filtered_sorted(
|
230 |
+
sort_key="duration",
|
231 |
+
reverse=True,
|
232 |
+
key_max_value={"duration": hparams["avoid_if_longer_than"]},
|
233 |
+
)
|
234 |
+
# when sorting do not shuffle in dataloader ! otherwise is pointless
|
235 |
+
hparams["dataloader_options"]["shuffle"] = False
|
236 |
+
|
237 |
+
elif hparams["sorting"] == "random":
|
238 |
+
pass
|
239 |
+
|
240 |
+
else:
|
241 |
+
raise NotImplementedError(
|
242 |
+
"sorting must be random, ascending or descending"
|
243 |
+
)
|
244 |
+
|
245 |
+
valid_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
|
246 |
+
csv_path=hparams["valid_csv"], replacements={"data_root": data_folder},
|
247 |
+
)
|
248 |
+
# We also sort the validation data so it is faster to validate
|
249 |
+
valid_data = valid_data.filtered_sorted(sort_key="duration")
|
250 |
+
|
251 |
+
test_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
|
252 |
+
csv_path=hparams["test_csv"], replacements={"data_root": data_folder},
|
253 |
+
)
|
254 |
+
|
255 |
+
# We also sort the validation data so it is faster to validate
|
256 |
+
test_data = test_data.filtered_sorted(sort_key="duration")
|
257 |
+
|
258 |
+
datasets = [train_data, valid_data, test_data]
|
259 |
+
|
260 |
+
# 2. Define audio pipeline:
|
261 |
+
@sb.utils.data_pipeline.takes("wav")
|
262 |
+
@sb.utils.data_pipeline.provides("sig")
|
263 |
+
def audio_pipeline(wav):
|
264 |
+
info = torchaudio.info(wav)
|
265 |
+
sig = sb.dataio.dataio.read_audio(wav)
|
266 |
+
resampled = torchaudio.transforms.Resample(
|
267 |
+
info.sample_rate, hparams["sample_rate"],
|
268 |
+
)(sig)
|
269 |
+
return resampled
|
270 |
+
|
271 |
+
sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline)
|
272 |
+
|
273 |
+
# 3. Define text pipeline:
|
274 |
+
@sb.utils.data_pipeline.takes("wrd")
|
275 |
+
@sb.utils.data_pipeline.provides(
|
276 |
+
"tokens_list", "tokens_bos", "tokens_eos", "tokens"
|
277 |
+
)
|
278 |
+
def text_pipeline(wrd):
|
279 |
+
tokens_list = tokenizer.sp.encode_as_ids(wrd)
|
280 |
+
yield tokens_list
|
281 |
+
tokens_bos = torch.LongTensor([hparams["bos_index"]] + (tokens_list))
|
282 |
+
yield tokens_bos
|
283 |
+
tokens_eos = torch.LongTensor(tokens_list + [hparams["eos_index"]])
|
284 |
+
yield tokens_eos
|
285 |
+
tokens = torch.LongTensor(tokens_list)
|
286 |
+
yield tokens
|
287 |
+
|
288 |
+
sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline)
|
289 |
+
|
290 |
+
# 4. Set output:
|
291 |
+
sb.dataio.dataset.set_output_keys(
|
292 |
+
datasets, ["id", "sig", "tokens_bos", "tokens_eos", "tokens"],
|
293 |
+
)
|
294 |
+
return train_data, valid_data, test_data
|
295 |
+
|
296 |
+
|
297 |
+
if __name__ == "__main__":
|
298 |
+
|
299 |
+
# Load hyperparameters file with command-line overrides
|
300 |
+
hparams_file, run_opts, overrides = sb.parse_arguments(sys.argv[1:])
|
301 |
+
with open(hparams_file) as fin:
|
302 |
+
hparams = load_hyperpyyaml(fin, overrides)
|
303 |
+
|
304 |
+
# If distributed_launch=True then
|
305 |
+
# create ddp_group with the right communication protocol
|
306 |
+
sb.utils.distributed.ddp_init_group(run_opts)
|
307 |
+
|
308 |
+
# Dataset preparation (parsing CommonVoice)
|
309 |
+
from dvoice_prepare import prepare_dvoice # noqa
|
310 |
+
|
311 |
+
# Create experiment directory
|
312 |
+
sb.create_experiment_directory(
|
313 |
+
experiment_directory=hparams["output_folder"],
|
314 |
+
hyperparams_to_save=hparams_file,
|
315 |
+
overrides=overrides,
|
316 |
+
)
|
317 |
+
|
318 |
+
# Due to DDP, we do the preparation ONLY on the main python process
|
319 |
+
run_on_main(
|
320 |
+
prepare_dvoice,
|
321 |
+
kwargs={
|
322 |
+
"data_folder": hparams["data_folder"],
|
323 |
+
"save_folder": hparams["save_folder"],
|
324 |
+
"train_csv_file": hparams["train_csv_file"],
|
325 |
+
"dev_csv_file": hparams["dev_csv_file"],
|
326 |
+
"test_csv_file": hparams["test_csv_file"],
|
327 |
+
"accented_letters": hparams["accented_letters"],
|
328 |
+
"language": hparams["language"],
|
329 |
+
"skip_prep": hparams["skip_prep"],
|
330 |
+
},
|
331 |
+
)
|
332 |
+
|
333 |
+
# Defining tokenizer and loading it
|
334 |
+
tokenizer = SentencePiece(
|
335 |
+
model_dir=hparams["save_folder"],
|
336 |
+
vocab_size=hparams["output_neurons"],
|
337 |
+
annotation_train=hparams["train_csv"],
|
338 |
+
annotation_read="wrd",
|
339 |
+
model_type=hparams["token_type"],
|
340 |
+
character_coverage=hparams["character_coverage"],
|
341 |
+
)
|
342 |
+
|
343 |
+
# Create the datasets objects as well as tokenization and encoding :-D
|
344 |
+
train_data, valid_data, test_data = dataio_prepare(hparams, tokenizer)
|
345 |
+
|
346 |
+
# Trainer initialization
|
347 |
+
asr_brain = ASR(
|
348 |
+
modules=hparams["modules"],
|
349 |
+
hparams=hparams,
|
350 |
+
run_opts=run_opts,
|
351 |
+
checkpointer=hparams["checkpointer"],
|
352 |
+
)
|
353 |
+
|
354 |
+
# Adding objects to trainer.
|
355 |
+
asr_brain.tokenizer = tokenizer
|
356 |
+
|
357 |
+
# Training
|
358 |
+
asr_brain.fit(
|
359 |
+
asr_brain.hparams.epoch_counter,
|
360 |
+
train_data,
|
361 |
+
valid_data,
|
362 |
+
train_loader_kwargs=hparams["dataloader_options"],
|
363 |
+
valid_loader_kwargs=hparams["test_dataloader_options"],
|
364 |
+
)
|
365 |
+
|
366 |
+
# Test
|
367 |
+
asr_brain.hparams.wer_file = hparams["output_folder"] + "/wer_test.txt"
|
368 |
+
asr_brain.evaluate(
|
369 |
+
test_data,
|
370 |
+
min_key="WER",
|
371 |
+
test_loader_kwargs=hparams["test_dataloader_options"],
|
372 |
+
)
|
Training/train_log.txt
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch: 1, lr_model: 1.00e+00, lr_wav2vec: 1.00e-04 - train loss: 2.16 - valid loss: 6.31e-01, valid CER: 17.94, valid WER: 61.08
|
2 |
+
epoch: 2, lr_model: 1.00e+00, lr_wav2vec: 1.00e-04 - train loss: 7.60e-01 - valid loss: 4.76e-01, valid CER: 13.59, valid WER: 49.70
|
3 |
+
epoch: 3, lr_model: 1.00e+00, lr_wav2vec: 1.00e-04 - train loss: 5.88e-01 - valid loss: 4.04e-01, valid CER: 11.77, valid WER: 43.35
|
4 |
+
epoch: 4, lr_model: 1.00e+00, lr_wav2vec: 1.00e-04 - train loss: 4.97e-01 - valid loss: 3.75e-01, valid CER: 10.61, valid WER: 39.29
|
5 |
+
epoch: 5, lr_model: 1.00e+00, lr_wav2vec: 1.00e-04 - train loss: 4.29e-01 - valid loss: 3.71e-01, valid CER: 10.15, valid WER: 37.38
|
6 |
+
epoch: 6, lr_model: 1.00e+00, lr_wav2vec: 1.00e-04 - train loss: 3.81e-01 - valid loss: 3.54e-01, valid CER: 9.54, valid WER: 35.23
|
7 |
+
epoch: 7, lr_model: 1.00e+00, lr_wav2vec: 1.00e-04 - train loss: 3.39e-01 - valid loss: 3.41e-01, valid CER: 8.98, valid WER: 33.48
|
8 |
+
epoch: 8, lr_model: 1.00e+00, lr_wav2vec: 1.00e-04 - train loss: 3.08e-01 - valid loss: 3.57e-01, valid CER: 8.80, valid WER: 32.41
|
9 |
+
epoch: 9, lr_model: 8.00e-01, lr_wav2vec: 9.00e-05 - train loss: 2.70e-01 - valid loss: 3.46e-01, valid CER: 8.47, valid WER: 31.33
|
10 |
+
epoch: 10, lr_model: 8.00e-01, lr_wav2vec: 9.00e-05 - train loss: 2.45e-01 - valid loss: 3.64e-01, valid CER: 8.30, valid WER: 30.31
|
11 |
+
epoch: 11, lr_model: 6.40e-01, lr_wav2vec: 8.10e-05 - train loss: 2.17e-01 - valid loss: 3.43e-01, valid CER: 8.00, valid WER: 29.91
|
12 |
+
epoch: 12, lr_model: 6.40e-01, lr_wav2vec: 8.10e-05 - train loss: 1.98e-01 - valid loss: 3.68e-01, valid CER: 7.93, valid WER: 29.49
|
13 |
+
epoch: 13, lr_model: 5.12e-01, lr_wav2vec: 7.29e-05 - train loss: 1.75e-01 - valid loss: 3.94e-01, valid CER: 7.78, valid WER: 29.09
|
14 |
+
epoch: 14, lr_model: 4.10e-01, lr_wav2vec: 6.56e-05 - train loss: 1.58e-01 - valid loss: 3.94e-01, valid CER: 7.75, valid WER: 28.90
|
15 |
+
epoch: 15, lr_model: 3.28e-01, lr_wav2vec: 5.90e-05 - train loss: 1.37e-01 - valid loss: 4.13e-01, valid CER: 7.64, valid WER: 28.39
|
16 |
+
epoch: 16, lr_model: 2.62e-01, lr_wav2vec: 5.31e-05 - train loss: 1.25e-01 - valid loss: 3.95e-01, valid CER: 7.48, valid WER: 27.94
|
17 |
+
epoch: 17, lr_model: 2.62e-01, lr_wav2vec: 5.31e-05 - train loss: 1.20e-01 - valid loss: 4.12e-01, valid CER: 7.36, valid WER: 27.73
|
18 |
+
epoch: 18, lr_model: 2.10e-01, lr_wav2vec: 4.78e-05 - train loss: 1.03e-01 - valid loss: 4.31e-01, valid CER: 7.44, valid WER: 27.69
|
19 |
+
epoch: 19, lr_model: 1.68e-01, lr_wav2vec: 4.30e-05 - train loss: 9.82e-02 - valid loss: 4.35e-01, valid CER: 7.28, valid WER: 27.08
|
20 |
+
epoch: 20, lr_model: 1.34e-01, lr_wav2vec: 3.87e-05 - train loss: 8.78e-02 - valid loss: 4.42e-01, valid CER: 7.27, valid WER: 27.18
|
21 |
+
epoch: 21, lr_model: 1.07e-01, lr_wav2vec: 3.49e-05 - train loss: 8.27e-02 - valid loss: 4.72e-01, valid CER: 7.16, valid WER: 26.79
|
22 |
+
epoch: 22, lr_model: 8.59e-02, lr_wav2vec: 3.14e-05 - train loss: 7.39e-02 - valid loss: 4.88e-01, valid CER: 7.03, valid WER: 26.28
|
23 |
+
epoch: 23, lr_model: 6.87e-02, lr_wav2vec: 2.82e-05 - train loss: 7.24e-02 - valid loss: 4.92e-01, valid CER: 6.95, valid WER: 26.03
|
24 |
+
epoch: 24, lr_model: 5.50e-02, lr_wav2vec: 2.54e-05 - train loss: 6.76e-02 - valid loss: 4.80e-01, valid CER: 6.89, valid WER: 26.11
|
25 |
+
epoch: 25, lr_model: 5.50e-02, lr_wav2vec: 2.54e-05 - train loss: 6.21e-02 - valid loss: 5.01e-01, valid CER: 6.88, valid WER: 25.88
|
26 |
+
epoch: 26, lr_model: 4.40e-02, lr_wav2vec: 2.29e-05 - train loss: 5.94e-02 - valid loss: 4.89e-01, valid CER: 6.90, valid WER: 26.08
|
27 |
+
epoch: 27, lr_model: 4.40e-02, lr_wav2vec: 2.29e-05 - train loss: 5.54e-02 - valid loss: 5.09e-01, valid CER: 6.87, valid WER: 26.04
|
28 |
+
epoch: 28, lr_model: 3.52e-02, lr_wav2vec: 2.06e-05 - train loss: 5.55e-02 - valid loss: 5.01e-01, valid CER: 6.76, valid WER: 25.67
|
29 |
+
epoch: 29, lr_model: 3.52e-02, lr_wav2vec: 2.06e-05 - train loss: 5.44e-02 - valid loss: 5.10e-01, valid CER: 6.72, valid WER: 25.62
|
30 |
+
epoch: 30, lr_model: 2.81e-02, lr_wav2vec: 1.85e-05 - train loss: 5.01e-02 - valid loss: 5.29e-01, valid CER: 6.71, valid WER: 25.50
|
31 |
+
Epoch loaded: 30 - test loss: 5.24e-01, test CER: 6.57, test WER: 24.92
|
32 |
+
Epoch loaded: 30 - test loss: 5.24e-01, test CER: 6.57, test WER: 24.92
|
33 |
+
Epoch loaded: 30 - test loss: 5.24e-01, test CER: 6.57, test WER: 24.92
|
Training/wer_test.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
graphs.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import wandb
|
2 |
+
import re
|
3 |
+
|
4 |
+
# Initialize WandB project
|
5 |
+
wandb.init(project="training-amharic-stt-visualizations", name="metrics_visualization")
|
6 |
+
|
7 |
+
# Path to your training log file
|
8 |
+
log_file = "Training/train_log.txt"
|
9 |
+
|
10 |
+
# Function to parse logs
|
11 |
+
# Function to parse logs
|
12 |
+
def parse_logs(log_file):
|
13 |
+
"""
|
14 |
+
Parses the training logs and yields metrics as dictionaries.
|
15 |
+
"""
|
16 |
+
with open(log_file, "r") as f:
|
17 |
+
for line in f:
|
18 |
+
# Match the log format using regex
|
19 |
+
match = re.match(
|
20 |
+
r"epoch: (?P<epoch>\d+), lr_model: (?P<lr_model>[0-9.e+-]+), lr_wav2vec: (?P<lr_wav2vec>[0-9.e+-]+) - "
|
21 |
+
r"train loss: (?P<train_loss>[0-9.e+-]+) - valid loss: (?P<valid_loss>[0-9.e+-]+), "
|
22 |
+
r"valid CER: (?P<valid_CER>[0-9.e+-]+), valid WER: (?P<valid_WER>[0-9.e+-]+)",
|
23 |
+
line.strip()
|
24 |
+
)
|
25 |
+
if match:
|
26 |
+
metrics = {key: float(value) if '.' in value or 'e' in value else int(value)
|
27 |
+
for key, value in match.groupdict().items()}
|
28 |
+
yield metrics
|
29 |
+
|
30 |
+
# Parse logs and log to WandB
|
31 |
+
for metrics in parse_logs(log_file):
|
32 |
+
# Log metrics to WandB
|
33 |
+
wandb.log(metrics)
|
34 |
+
|
35 |
+
# Finish WandB run
|
36 |
+
wandb.finish()
|