import wandb import re # Initialize WandB project wandb.init(project="training-amharic-stt-visualizations", name="metrics_visualization") # Path to your training log file log_file = "Training/train_log.txt" # Function to parse logs # Function to parse logs def parse_logs(log_file): """ Parses the training logs and yields metrics as dictionaries. """ with open(log_file, "r") as f: for line in f: # Match the log format using regex match = re.match( r"epoch: (?P\d+), lr_model: (?P[0-9.e+-]+), lr_wav2vec: (?P[0-9.e+-]+) - " r"train loss: (?P[0-9.e+-]+) - valid loss: (?P[0-9.e+-]+), " r"valid CER: (?P[0-9.e+-]+), valid WER: (?P[0-9.e+-]+)", line.strip() ) if match: metrics = {key: float(value) if '.' in value or 'e' in value else int(value) for key, value in match.groupdict().items()} yield metrics # Parse logs and log to WandB for metrics in parse_logs(log_file): # Log metrics to WandB wandb.log(metrics) # Finish WandB run wandb.finish()