Spaces:
Running
Running
File size: 14,403 Bytes
7dbe662 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
import os
import functools
import torch
from torch import nn
import torch.nn.functional as F
from huggingface_hub import hf_hub_download
from typing import Optional, List, Union, Tuple, Type
from segment_anything import build_sam
from segment_anything.mobile_encoder.tiny_vit_sam import TinyViT
from segment_anything.modeling import PromptEncoder, MaskDecoder, TwoWayTransformer
from segment_anything.modeling.image_encoder import ImageEncoderViT, LayerNorm2d, PatchEmbed, Block, Attention
from segment_anything.mobile_encoder.setup_mobile_sam import load_mobile_sam
from segment_anything.modeling.sam import Sam
from sam_extension.distillation_models.fastertinyvit import FasterTinyViT
from sam_extension.distillation_models.dino import DINO
# from sam_extension.distillation_models.flashvision_transformer import FlashVisionTransformer
SAM_REPO_ID = 'YouLiXiya/YL-SAM'
hf_sam_download = functools.partial(hf_hub_download, repo_id=SAM_REPO_ID, local_dir_use_symlinks=True)
class SAMImageEncoder(nn.Module):
def __init__(self,
sam_checkpoint_path,
device='cuda'):
super(SAMImageEncoder, self).__init__()
sam = build_sam(sam_checkpoint_path).to(device)
self.image_encoder = sam.image_encoder
del sam
torch.cuda.empty_cache()
def forward(self, x):
return self.image_encoder(x)
class MobileSAMImageEncoder(nn.Module):
def __init__(self,
sam_checkpoint_path,
device='cuda'):
super(MobileSAMImageEncoder, self).__init__()
sam = load_mobile_sam(sam_checkpoint_path, device)
self.image_encoder = sam.image_encoder
del sam
torch.cuda.empty_cache()
def forward(self, x):
return self.image_encoder(x)
class SAMEncoderViT(nn.Module):
def __init__(
self,
img_size: int = 1024,
patch_size: int = 16,
in_chans: int = 3,
embed_dim: int = 768,
depth: int = 12,
num_heads: int = 12,
mlp_ratio: float = 4.0,
out_chans: int = 256,
qkv_bias: bool = True,
norm_layer: Type[nn.Module] = nn.LayerNorm,
act_layer: Type[nn.Module] = nn.GELU,
use_abs_pos: bool = True,
use_rel_pos: bool = False,
rel_pos_zero_init: bool = True,
window_size: int = 0,
global_attn_indexes: Tuple[int, ...] = (),
multi_scale: bool = False,
output_shape: Union[Tuple, List] = None
) -> None:
"""
Args:
img_size (int): Input image size.
patch_size (int): Patch size.
in_chans (int): Number of input image channels.
embed_dim (int): Patch embedding dimension.
depth (int): Depth of ViT.
num_heads (int): Number of attention heads in each ViT block.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool): If True, add a learnable bias to query, key, value.
norm_layer (nn.Module): Normalization layer.
act_layer (nn.Module): Activation layer.
use_abs_pos (bool): If True, use absolute positional embeddings.
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
window_size (int): Window size for window attention blocks.
global_attn_indexes (list): Indexes for blocks using global attention.
"""
super().__init__()
self.img_size = img_size
self.multi_scale = multi_scale
self.output_shape = tuple(output_shape) if output_shape else None
self.patch_embed = PatchEmbed(
kernel_size=(patch_size, patch_size),
stride=(patch_size, patch_size),
in_chans=in_chans,
embed_dim=embed_dim,
)
self.pos_embed: Optional[nn.Parameter] = None
if use_abs_pos:
# Initialize absolute positional embedding with pretrain image size.
self.pos_embed = nn.Parameter(
torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim)
)
self.blocks = nn.ModuleList()
for i in range(depth):
block = Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
norm_layer=norm_layer,
act_layer=act_layer,
use_rel_pos=use_rel_pos,
rel_pos_zero_init=rel_pos_zero_init,
window_size=window_size if i not in global_attn_indexes else 0,
input_size=(img_size // patch_size, img_size // patch_size),
)
self.blocks.append(block)
self.neck = nn.Sequential(
nn.Conv2d(
embed_dim*depth if self.multi_scale and self.output_shape else embed_dim,
out_chans,
kernel_size=1,
bias=False,
),
LayerNorm2d(out_chans),
nn.Conv2d(
out_chans,
out_chans,
kernel_size=3,
padding=1,
bias=False,
),
LayerNorm2d(out_chans),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.patch_embed(x)
if self.pos_embed is not None:
x = x + self.pos_embed
if self.multi_scale and self.output_shape:
output_list = []
for blk in self.blocks:
x = blk(x)
output_list.append(F.interpolate(x.permute(0, 3, 1, 2), size=self.output_shape, mode='bilinear'))
x = self.neck(torch.cat(output_list, dim=1))
else:
for blk in self.blocks:
x = blk(x)
x = self.neck(x.permute(0, 3, 1, 2))
return x
class SAMEncoderAdaptor(nn.Module):
def __init__(self,
img_size: int,
input_size: Optional[Tuple[int, int]],
embed_dim: int = 768,
depth: int = 12,
num_heads: int = 12,
mlp_ratio: float = 4.0,
out_chans: int = 256,
qkv_bias: bool = True,
norm_layer: Type[nn.Module] = nn.LayerNorm,
act_layer: Type[nn.Module] = nn.GELU,
use_abs_pos: bool = True,
use_rel_pos: bool = False,
rel_pos_zero_init: bool = True,
window_size: int = 0,
global_attn_indexes: Tuple[int, ...] = (),
multi_scale: bool = False,
output_shape: Union[Tuple, List] = None):
super(SAMEncoderAdaptor, self).__init__()
self.img_size = img_size
self.multi_scale = multi_scale
self.output_shape = tuple(output_shape) if output_shape else None
self.pos_embed: Optional[nn.Parameter] = None
if use_abs_pos:
# Initialize absolute positional embedding with pretrain image size.
self.pos_embed = nn.Parameter(
torch.zeros(1, input_size[0], input_size[1], embed_dim)
)
self.blocks = nn.ModuleList()
for i in range(depth):
block = Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
norm_layer=norm_layer,
act_layer=act_layer,
use_rel_pos=use_rel_pos,
rel_pos_zero_init=rel_pos_zero_init,
window_size=window_size if i not in global_attn_indexes else 0,
input_size=input_size,
)
self.blocks.append(block)
self.neck = nn.Sequential(
nn.Conv2d(
embed_dim * depth if self.multi_scale and self.output_shape else embed_dim,
out_chans,
kernel_size=1,
bias=False,
),
LayerNorm2d(out_chans),
nn.Conv2d(
out_chans,
out_chans,
kernel_size=3,
padding=1,
bias=False,
),
LayerNorm2d(out_chans),
)
def forward(self, x: torch.Tensor, original_size: Union[Tuple, List] = None) -> torch.Tensor:
if original_size:
original_size = torch.LongTensor(original_size)
output_shape = x.shape[-2:]
if original_size.ndim == 1:
original_size = original_size[None, ...]
adaptor_inputs = []
for i in range(original_size.shape[0]):
h, w = original_size[i]
if h > w:
new_h = output_shape[0]
new_w = int(w * new_h / h)
else:
new_w = output_shape[1]
new_h = int(h * new_w / w)
encoder_output = x[0].unsqueeze(0)
encoder_output = F.interpolate(encoder_output, size=(new_h, new_w), mode='bilinear')
pad_h = output_shape[0] - new_h
pad_w = output_shape[1] - new_w
encoder_output = F.pad(encoder_output, (0, pad_w, 0, pad_h))
adaptor_inputs.append(encoder_output)
adaptor_inputs = torch.cat(adaptor_inputs, dim=0)
x = adaptor_inputs.permute(0, 2, 3, 1)
if self.pos_embed is not None:
x = x + self.pos_embed
if self.multi_scale and self.output_shape:
output_list = []
for blk in self.blocks:
x = blk(x)
output_list.append(F.interpolate(x.permute(0, 3, 1, 2), size=self.output_shape, mode='bilinear'))
x = self.neck(torch.cat(output_list, dim=1))
else:
for blk in self.blocks:
x = blk(x)
x = self.neck(x.permute(0, 3, 1, 2))
return x
class DINOSAMViT(nn.Module):
def __init__(self,
dino_model_type,
device='cuda',
pca_dim=None,
**kwargs
):
super(DINOSAMViT, self).__init__()
self.img_size = kwargs['img_size']
if not pca_dim:
pca_dim = None
self.dino = DINO(dino_model_type, device, self.img_size, pca_dim)
self.input_size = tuple(kwargs['output_shape'])
# input_size = self.dino.model.patch_embed.img_size // self.dino.model.patch_embed.img_size
# self.input_size = (input_size, input_size)
embed_dim = pca_dim if pca_dim is not None else self.dino.model.embed_dim
kwargs.update({'input_size': self.input_size, 'embed_dim': embed_dim})
self.adaptor = SAMEncoderAdaptor(**kwargs).to(device)
def extract_dino_features(self, x, transform=False, size = None):
return self.dino.extract_features(x, transform, size)
def forward(self, x, transform=False, size = None):
dino_feature = F.normalize(self.extract_dino_features(x, transform, size), dim=3)
adaptor_input = F.interpolate(dino_feature.permute(0, 3, 1, 2), size=self.input_size, mode='bilinear').permute(0, 2, 3, 1)
return self.adaptor(adaptor_input)
def setup_model(model_config):
prompt_embed_dim = 256
image_size = 1024
vit_patch_size = 16
image_embedding_size = image_size // vit_patch_size
model = eval(model_config.pop('type'))(**model_config)
if model.__class__.__name__ == 'SAMEncoderAdaptor':
adaptor = model
image_encoder = load_sam('weights/sam/mobile_sam.pt', 'mobile_sam', 'cpu').image_encoder
else:
adaptor = None
image_encoder = model
sam = Sam(
image_encoder=image_encoder,
prompt_encoder=PromptEncoder(
embed_dim=prompt_embed_dim,
image_embedding_size=(image_embedding_size, image_embedding_size),
input_image_size=(image_size, image_size),
mask_in_chans=16,
),
mask_decoder=MaskDecoder(
num_multimask_outputs=3,
transformer=TwoWayTransformer(
depth=2,
embedding_dim=prompt_embed_dim,
mlp_dim=2048,
num_heads=8,
),
transformer_dim=prompt_embed_dim,
iou_head_depth=3,
iou_head_hidden_dim=256,
),
adaptor=adaptor,
pixel_mean=[123.675, 116.28, 103.53],
pixel_std=[58.395, 57.12, 57.375],
)
return sam
def load_distillation_sam(distillation_sam_ckpt_path,
device='cuda'):
ckpt = torch.load(distillation_sam_ckpt_path)
sam = setup_model(ckpt['model_config'])
sam.load_state_dict(ckpt['model'])
return sam.to(device)
def load_sam(sam_ckpt_path, sam_version, device):
if not os.path.exists(sam_ckpt_path):
parent_dir = os.path.dirname(sam_ckpt_path)
os.makedirs(parent_dir, exist_ok=True)
hf_sam_download(filename=os.path.basename(sam_ckpt_path), local_dir=parent_dir)
if sam_version == 'sam':
sam = build_sam(sam_ckpt_path).to(device)
elif sam_version == 'mobile_sam':
sam = load_mobile_sam(sam_ckpt_path, device)
elif sam_version == 'distillation_sam':
sam = load_distillation_sam(sam_ckpt_path, device)
else:
raise ValueError('sam version error, please give sam version in [sam, mobile_sam, distillation_sam]')
return sam
if __name__ == '__main__':
from distillation.utils import get_parameter_number
vit = SAMEncoderViT(depth=3,
embed_dim=256,
img_size=512,
mlp_ratio=4,
num_heads=16,
patch_size=8,
qkv_bias=True,
use_rel_pos=True,
global_attn_indexes=[1],
window_size=16,
out_chans=256,
multi_scale=False,
output_shape='').cuda()
x = torch.randn((1, 3, 512, 512)).cuda()
print(vit(x).shape)
print(get_parameter_number(vit))
|