File size: 7,038 Bytes
d8f4873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import cv2  # type: ignore

from segment_anything import SamAutomaticMaskGenerator, sam_model_registry

import argparse
import json
import os
from typing import Any, Dict, List

parser = argparse.ArgumentParser(
    description=(
        "Runs automatic mask generation on an input image or directory of images, "
        "and outputs masks as either PNGs or COCO-style RLEs. Requires open-cv, "
        "as well as pycocotools if saving in RLE format."
    )
)

parser.add_argument(
    "--input",
    type=str,
    required=True,
    help="Path to either a single input image or folder of images.",
)

parser.add_argument(
    "--output",
    type=str,
    required=True,
    help=(
        "Path to the directory where masks will be output. Output will be either a folder "
        "of PNGs per image or a single json with COCO-style masks."
    ),
)

parser.add_argument(
    "--model-type",
    type=str,
    default="default",
    help="The type of model to load, in ['default', 'vit_l', 'vit_b']",
)

parser.add_argument(
    "--checkpoint",
    type=str,
    required=True,
    help="The path to the SAM checkpoint to use for mask generation.",
)

parser.add_argument("--device", type=str, default="cuda", help="The device to run generation on.")

parser.add_argument(
    "--convert-to-rle",
    action="store_true",
    help=(
        "Save masks as COCO RLEs in a single json instead of as a folder of PNGs. "
        "Requires pycocotools."
    ),
)

amg_settings = parser.add_argument_group("AMG Settings")

amg_settings.add_argument(
    "--points-per-side",
    type=int,
    default=None,
    help="Generate masks by sampling a grid over the image with this many points to a side.",
)

amg_settings.add_argument(
    "--points-per-batch",
    type=int,
    default=None,
    help="How many input points to process simultaneously in one batch.",
)

amg_settings.add_argument(
    "--pred-iou-thresh",
    type=float,
    default=None,
    help="Exclude masks with a predicted score from the model that is lower than this threshold.",
)

amg_settings.add_argument(
    "--stability-score-thresh",
    type=float,
    default=None,
    help="Exclude masks with a stability score lower than this threshold.",
)

amg_settings.add_argument(
    "--stability-score-offset",
    type=float,
    default=None,
    help="Larger values perturb the mask more when measuring stability score.",
)

amg_settings.add_argument(
    "--box-nms-thresh",
    type=float,
    default=None,
    help="The overlap threshold for excluding a duplicate mask.",
)

amg_settings.add_argument(
    "--crop-n-layers",
    type=int,
    default=None,
    help=(
        "If >0, mask generation is run on smaller crops of the image to generate more masks. "
        "The value sets how many different scales to crop at."
    ),
)

amg_settings.add_argument(
    "--crop-nms-thresh",
    type=float,
    default=None,
    help="The overlap threshold for excluding duplicate masks across different crops.",
)

amg_settings.add_argument(
    "--crop-overlap-ratio",
    type=int,
    default=None,
    help="Larger numbers mean image crops will overlap more.",
)

amg_settings.add_argument(
    "--crop-n-points-downscale-factor",
    type=int,
    default=None,
    help="The number of points-per-side in each layer of crop is reduced by this factor.",
)

amg_settings.add_argument(
    "--min-mask-region-area",
    type=int,
    default=None,
    help=(
        "Disconnected mask regions or holes with area smaller than this value "
        "in pixels are removed by postprocessing."
    ),
)


def write_masks_to_folder(masks: List[Dict[str, Any]], path: str) -> None:
    header = "id,area,bbox_x0,bbox_y0,bbox_w,bbox_h,point_input_x,point_input_y,predicted_iou,stability_score,crop_box_x0,crop_box_y0,crop_box_w,crop_box_h"  # noqa
    metadata = [header]
    for i, mask_data in enumerate(masks):
        mask = mask_data["segmentation"]
        filename = f"{i}.png"
        cv2.imwrite(os.path.join(path, filename), mask * 255)
        mask_metadata = [
            str(i),
            str(mask_data["area"]),
            *[str(x) for x in mask_data["bbox"]],
            *[str(x) for x in mask_data["point_coords"][0]],
            str(mask_data["predicted_iou"]),
            str(mask_data["stability_score"]),
            *[str(x) for x in mask_data["crop_box"]],
        ]
        row = ",".join(mask_metadata)
        metadata.append(row)
    metadata_path = os.path.join(path, "metadata.csv")
    with open(metadata_path, "w") as f:
        f.write("\n".join(metadata))

    return


def get_amg_kwargs(args):
    amg_kwargs = {
        "points_per_side": args.points_per_side,
        "points_per_batch": args.points_per_batch,
        "pred_iou_thresh": args.pred_iou_thresh,
        "stability_score_thresh": args.stability_score_thresh,
        "stability_score_offset": args.stability_score_offset,
        "box_nms_thresh": args.box_nms_thresh,
        "crop_n_layers": args.crop_n_layers,
        "crop_nms_thresh": args.crop_nms_thresh,
        "crop_overlap_ratio": args.crop_overlap_ratio,
        "crop_n_points_downscale_factor": args.crop_n_points_downscale_factor,
        "min_mask_region_area": args.min_mask_region_area,
    }
    amg_kwargs = {k: v for k, v in amg_kwargs.items() if v is not None}
    return amg_kwargs


def main(args: argparse.Namespace) -> None:
    print("Loading model...")
    sam = sam_model_registry[args.model_type](checkpoint=args.checkpoint)
    _ = sam.to(device=args.device)
    output_mode = "coco_rle" if args.convert_to_rle else "binary_mask"
    amg_kwargs = get_amg_kwargs(args)
    generator = SamAutomaticMaskGenerator(sam, output_mode=output_mode, **amg_kwargs)

    if not os.path.isdir(args.input):
        targets = [args.input]
    else:
        targets = [
            f for f in os.listdir(args.input) if not os.path.isdir(os.path.join(args.input, f))
        ]
        targets = [os.path.join(args.input, f) for f in targets]

    os.makedirs(args.output, exist_ok=True)

    for t in targets:
        print(f"Processing '{t}'...")
        image = cv2.imread(t)
        if image is None:
            print(f"Could not load '{t}' as an image, skipping...")
            continue
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

        masks = generator.generate(image)

        base = os.path.basename(t)
        base = os.path.splitext(base)[0]
        save_base = os.path.join(args.output, base)
        if output_mode == "binary_mask":
            os.makedirs(save_base, exist_ok=False)
            write_masks_to_folder(masks, save_base)
        else:
            save_file = save_base + ".json"
            with open(save_file, "w") as f:
                json.dump(masks, f)
    print("Done!")


if __name__ == "__main__":
    args = parser.parse_args()
    main(args)