Spaces:
Running
Running
File size: 6,840 Bytes
7dbe662 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import math
import cv2
import PIL
import torch
from PIL.Image import Image
from typing import Union, Tuple, List, Optional
import numpy as np
import supervision as sv
from sklearn.decomposition import PCA
# def add_points_tag(img: Union[Image, np.ndarray],
# point_labels: Union[List[int], np.ndarray] = None,
# point_coords: Union[List[List[int]], np.ndarray] = None,
# pil: bool = False):
# if point_labels is None or point_coords is None or \
# not isinstance(point_labels, (List, np.ndarray)) or \
# not isinstance(point_coords, (List, np.ndarray)):
# return img
# if len(point_labels) != len(point_coords):
# print('length of point_label and point_coordinate must be same!')
# return img
# if isinstance(img, Image):
# img = np.uint8(img)
# start_angle = 40
# x = 8
# y = 2
# def get_point(angle, d, base):
# angle = angle / 180.0 * math.pi
# _x, _y = math.cos(angle) * d, math.sin(angle) * d
# return [base[0] + _x, base[1] - _y]
# # assert len(point_labels) == len(point_coords), ''
# for i in range(len(point_labels)):
# points = []
# for j in range(5):
# _x, _y = math.cos(start_angle), math.sin(start_angle)
# points.append(get_point(start_angle, x, point_coords[i]))
# start_angle -= 36
# points.append(get_point(start_angle, y, point_coords[i]))
# start_angle -= 36
# points = np.array([points], np.int32)
# color = (255, 0, 0) if point_labels[i] == 0 else (0, 255, 0)
# cv2.fillPoly(img, points, color, cv2.LINE_AA)
# if pil:
# img = PIL.Image.fromarray(img)
# return img
def add_points_tag(img: Union[Image, np.ndarray],
point_labels: Union[List[int], np.ndarray] = None,
point_coords: Union[List[List[int]], np.ndarray] = None,
pil: bool = False):
if point_labels is None or point_coords is None or \
not isinstance(point_labels, (List, np.ndarray)) or \
not isinstance(point_coords, (List, np.ndarray)):
return img
if len(point_labels) != len(point_coords):
print('length of point_label and point_coordinate must be same!')
return img
if isinstance(img, Image):
img = np.array(img)
# img.flags.writeable = True
h, w = img.shape[:2]
x_start_list, x_end_list = np.where((point_coords[:, 0] - 4) > 0, point_coords[:, 0] - 4, 0), np.where((point_coords[:, 0] + 4) < w, point_coords[:, 0] + 4, w)
y_start_list, y_end_list = np.where((point_coords[:, 1] - 4) > 0, point_coords[:, 1] - 4, 0), np.where((point_coords[:, 1] + 4) < h, point_coords[:, 1] + 4, h)
for i in range(len(point_labels)):
x_start, x_end = x_start_list[i], x_end_list[i]
y_start, y_end = y_start_list[i], y_end_list[i]
label = point_labels[i]
color = [0, 255, 0] if int(label) == 1 else [255, 0, 0]
for x in range(x_start, x_end):
for y in range(y_start, y_end):
img[y, x, :] = color
if pil:
img = PIL.Image.fromarray(img)
return img
def add_boxes_tag(img: Union[Image, np.ndarray],
boxes: Union[List[List[int]], np.ndarray] = None,
pil: bool = False):
if boxes is None or not isinstance(boxes, (List, np.ndarray)):
return img
# if isinstance(boxes, np.ndarray):
# if not boxes.all():
# return img
# else:
# if not boxes:
# return img
if isinstance(img, Image):
img = np.uint8(img)
thickness = 2
for i in range(len(boxes)):
color = (0, 255, 0)
img = cv2.rectangle(img, (boxes[i][0], boxes[i][1]), (boxes[i][2], boxes[i][3]), color, thickness)
if pil:
img = PIL.Image.fromarray(img)
return img
def add_prompts_tag(img: Union[Image, np.ndarray],
point_labels: Union[List[int], np.ndarray] = None,
point_coords: Union[List[List[int]], np.ndarray] = None,
boxes: Union[List[List[int]], np.ndarray] = None,
pil: bool = False):
img = add_points_tag(img, point_labels, point_coords, pil=pil)
img = add_boxes_tag(img, boxes, pil=pil)
return img
def get_empty_detections():
detections = sv.Detections(xyxy=np.array([0, 0, 0, 0]).reshape(1, 4))
detections.xyxy = None
return detections
def pca_feature(feature: torch.Tensor, dim: int = 3, return_np: bool = True):
pca = PCA(n_components=dim)
H, W, C = feature.shape
feature = feature.view(-1, C).cpu().numpy()
feature = pca.fit_transform(feature)
feature = torch.tensor(feature.reshape(H, W, dim))
if return_np:
return feature.numpy()
else:
return feature
def visual_feature_rgb(feature: torch.Tensor, pil:bool = True):
assert feature.ndim >= 3, 'the dim of feature must >= 3!'
if feature.ndim == 4:
feature = feature.squeeze(0)
if feature.shape[-1] != 3:
feature = pca_feature(feature, 3, False)
max_f, _ = feature.max(-1)
min_f, _ = feature.min(-1)
feature = (feature - min_f[..., None]) / (max_f[..., None] - min_f[..., None])
feature = np.uint8((feature*255).cpu().numpy())
if pil:
return PIL.Image.fromarray(feature)
else:
return feature
def transform_coords(src_shape, des_shape, points = None, boxes = None):
assert points is not None or boxes is not None, 'one of points and boxes must be given!'
scale_h = des_shape[0] / src_shape[0]
scale_w = des_shape[1] / src_shape[1]
if points is not None:
new_points = np.full_like(points, 0)
new_points[:, 0] = points[:, 0] * scale_w
new_points[:, 1] = points[:, 1] * scale_h
new_points.astype(np.int64)
else:
new_points = None
if boxes is not None:
new_boxes = np.full_like(boxes, 0)
new_boxes[:, 0] = boxes[:, 0] * scale_w
new_boxes[:, 1] = boxes[:, 1] * scale_h
new_boxes[:, 2] = boxes[:, 2] * scale_w
new_boxes[:, 3] = boxes[:, 3] * scale_h
new_boxes.astype(np.int64)
else:
new_boxes = None
return new_points, new_boxes
def mask2greyimg(mask_list, pil=True):
grey_img_list = []
for mask in mask_list:
if pil:
grey_img_list.append(PIL.Image.fromarray(np.uint8(mask*255)))
else:
grey_img_list.append(np.uint8(mask * 255))
return grey_img_list
if __name__ == '__main__':
src_shape = (100,100)
des_shape = (200,200)
points = np.array([[20,20],[40,40]])
boxes = np.array([[10,10,20,20]])
new_points, new_boxes = transform_coords(src_shape, des_shape, points, boxes)
print(new_points, new_boxes)
|