Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import gradio as gr
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
from sam_extension.utils import add_points_tag, add_boxes_tag, mask2greyimg
|
7 |
+
from sam_extension.pipeline import SAMEncoderPipeline, SAMDecoderPipeline, GroundingDinoPipeline
|
8 |
+
point_coords = []
|
9 |
+
point_labels = []
|
10 |
+
boxes = []
|
11 |
+
boxes_point = []
|
12 |
+
texts = []
|
13 |
+
sam_encoder_pipeline = None
|
14 |
+
sam_decoder_pipeline = None
|
15 |
+
result_list = []
|
16 |
+
result_index_list = []
|
17 |
+
mask_result_list = []
|
18 |
+
mask_result_index_list = []
|
19 |
+
def resize(image, des_max=512):
|
20 |
+
h, w = image.shape[:2]
|
21 |
+
if h >= w:
|
22 |
+
new_h = des_max
|
23 |
+
new_w = int(des_max * w / h)
|
24 |
+
else:
|
25 |
+
new_w = des_max
|
26 |
+
new_h = int(des_max * h / w)
|
27 |
+
return cv2.resize(image, (new_w, new_h))
|
28 |
+
def show_prompt(img, prompt_mode, pos_point, evt: gr.SelectData): # SelectData is a subclass of EventData
|
29 |
+
global point_coords, point_labels, boxes_point, boxes
|
30 |
+
if prompt_mode == 'point':
|
31 |
+
point_coords.append([evt.index[0], evt.index[1]])
|
32 |
+
point_labels.append(1 if pos_point else 0)
|
33 |
+
result_img = add_points_tag(img, np.array(point_labels), np.array(point_coords))
|
34 |
+
elif prompt_mode == 'box':
|
35 |
+
boxes_point.append(evt.index[0])
|
36 |
+
boxes_point.append(evt.index[1])
|
37 |
+
if len(boxes_point) == 4:
|
38 |
+
boxes.append(boxes_point)
|
39 |
+
boxes_point = []
|
40 |
+
result_img = add_boxes_tag(img, np.array(boxes))
|
41 |
+
else:
|
42 |
+
result_img = img
|
43 |
+
return result_img, point_coords, point_labels, boxes_point, boxes
|
44 |
+
|
45 |
+
def reset_points(img):
|
46 |
+
global point_coords, point_labels
|
47 |
+
point_coords = []
|
48 |
+
point_labels = []
|
49 |
+
return img, point_coords, point_labels
|
50 |
+
|
51 |
+
|
52 |
+
def reset_boxes(img):
|
53 |
+
global boxes_point, boxes
|
54 |
+
boxes_point = []
|
55 |
+
boxes = []
|
56 |
+
return img, boxes_point, boxes
|
57 |
+
|
58 |
+
def load_sam(sam_ckpt_path, sam_version):
|
59 |
+
global sam_encoder_pipeline, sam_decoder_pipeline
|
60 |
+
sam_encoder_pipeline = SAMEncoderPipeline.from_pretrained(ckpt_path=sam_ckpt_path, sam_version=sam_version, device='cpu')
|
61 |
+
sam_decoder_pipeline = SAMDecoderPipeline.from_pretrained(ckpt_path=sam_ckpt_path, sam_version=sam_version, device='cpu')
|
62 |
+
return 'sam loaded!'
|
63 |
+
|
64 |
+
|
65 |
+
def generate_mask(img, prompt_mode, text_prompt):
|
66 |
+
global result_list, mask_result_list, result_index_list, mask_result_index_list
|
67 |
+
image = Image.fromarray(img)
|
68 |
+
img_size = sam_decoder_pipeline.img_size
|
69 |
+
des_img = image.resize((img_size, img_size))
|
70 |
+
sam_encoder_output = sam_encoder_pipeline(des_img)
|
71 |
+
if prompt_mode == 'point':
|
72 |
+
point_coords_ = np.array(point_coords)
|
73 |
+
point_labels_ = np.array(point_labels)
|
74 |
+
boxes_ = None
|
75 |
+
texts_ = None
|
76 |
+
grounding_dino_pipeline = None
|
77 |
+
elif prompt_mode == 'box':
|
78 |
+
point_coords_ = None
|
79 |
+
point_labels_ = None
|
80 |
+
boxes_ = np.array(boxes)
|
81 |
+
texts_ = None
|
82 |
+
grounding_dino_pipeline = None
|
83 |
+
else:
|
84 |
+
point_coords_ = None
|
85 |
+
point_labels_ = None
|
86 |
+
boxes_ = None
|
87 |
+
texts_ = text_prompt.split(',')
|
88 |
+
grounding_dino_pipeline = GroundingDinoPipeline.from_pretrained(
|
89 |
+
'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py',
|
90 |
+
'weights/groundingdino/groundingdino_swint_ogc.pth',
|
91 |
+
device='cpu')
|
92 |
+
result_list, mask_result_list, masks_list = sam_decoder_pipeline.visualize_results(
|
93 |
+
image,
|
94 |
+
des_img,
|
95 |
+
sam_encoder_output,
|
96 |
+
point_coords=point_coords_,
|
97 |
+
point_labels=point_labels_,
|
98 |
+
boxes=boxes_,
|
99 |
+
texts=texts_,
|
100 |
+
grounding_dino_pipeline=grounding_dino_pipeline,
|
101 |
+
multimask_output=True,
|
102 |
+
visualize_promts=True,
|
103 |
+
pil=False)
|
104 |
+
# result_index_list = [f'result_{i}' for i in range(len(result_list))]
|
105 |
+
# mask_result_index_list = [f'mask_result_{i}' for i in range(len(mask_result_list))]
|
106 |
+
return 'mask generated!', f'result_num : {len(result_list)}', f'mask_result_num : {len(masks_list)}'
|
107 |
+
# mask_grey_result_list = mask2greyimg(masks_list, False)
|
108 |
+
|
109 |
+
|
110 |
+
def show_result(result_index):
|
111 |
+
return result_list[int(result_index)]
|
112 |
+
|
113 |
+
|
114 |
+
def show_mask_result(mask_result_index):
|
115 |
+
return mask_result_list[int(mask_result_index)]
|
116 |
+
|
117 |
+
|
118 |
+
with gr.Blocks() as demo:
|
119 |
+
with gr.Row():
|
120 |
+
img = gr.Image(None, width=400, height=400, label='input_image', type='numpy')
|
121 |
+
result_img = gr.Image(None, width=400, height=400, label='output_image', type='numpy')
|
122 |
+
with gr.Row():
|
123 |
+
pos_point = gr.Checkbox(value=True, label='pos_point')
|
124 |
+
prompt_mode = gr.Dropdown(choices=['point', 'box', 'text'], value='point', label='prompt_mode')
|
125 |
+
with gr.Row():
|
126 |
+
point_coords_text = gr.Textbox(value=str(point_coords), interactive=True, label='point_coords')
|
127 |
+
point_labels_text = gr.Textbox(value=str(point_labels), interactive=True, label='point_labels')
|
128 |
+
reset_points_bu = gr.Button(value='reset_points')
|
129 |
+
reset_points_bu.click(fn=reset_points, inputs=[img], outputs=[result_img, point_coords_text, point_labels_text])
|
130 |
+
with gr.Row():
|
131 |
+
boxes_point_text = gr.Textbox(value=str(boxes_point), interactive=True, label='boxes_point')
|
132 |
+
boxes_text = gr.Textbox(value=str(boxes), interactive=True, label='boxes')
|
133 |
+
reset_boxes_bu = gr.Button(value='reset_boxes')
|
134 |
+
reset_boxes_bu.click(fn=reset_boxes, inputs=[img], outputs=[result_img, boxes_point_text, boxes_text])
|
135 |
+
with gr.Row():
|
136 |
+
text_prompt = gr.Textbox(value='', interactive=True, label='text_prompt')
|
137 |
+
with gr.Row():
|
138 |
+
sam_ckpt_path = gr.Dropdown(choices=['weights/sam/mobile_sam.pt'],
|
139 |
+
value='weights/sam/mobile_sam.pt',
|
140 |
+
label='SAM ckpt_path')
|
141 |
+
sam_version = gr.Dropdown(choices=['mobile_sam'],
|
142 |
+
value='mobile_sam',
|
143 |
+
label='SAM version')
|
144 |
+
load_sam_bu = gr.Button(value='load SAM')
|
145 |
+
sam_load_text = gr.Textbox(value='', interactive=True, label='sam_load')
|
146 |
+
load_sam_bu.click(fn=load_sam, inputs=[sam_ckpt_path, sam_version], outputs=sam_load_text)
|
147 |
+
with gr.Row():
|
148 |
+
result_num_text = gr.Textbox(value='', interactive=True, label='result_num')
|
149 |
+
result_index = gr.Number(value=0, label='result_index')
|
150 |
+
show_result_bu = gr.Button(value='show_result')
|
151 |
+
show_result_bu.click(fn=show_result, inputs=[result_index], outputs=[result_img])
|
152 |
+
with gr.Row():
|
153 |
+
mask_result_num_text = gr.Textbox(value='', interactive=True, label='mask_result_num')
|
154 |
+
mask_result_index = gr.Number(value=0, label='mask_result_index')
|
155 |
+
show_mask_result_bu = gr.Button(value='show_mask_result')
|
156 |
+
show_mask_result_bu.click(fn=show_mask_result, inputs=[mask_result_index], outputs=[result_img])
|
157 |
+
with gr.Row():
|
158 |
+
generate_masks_bu = gr.Button(value='SAM generate masks')
|
159 |
+
sam_text = gr.Textbox(value='', interactive=True, label='SAM')
|
160 |
+
generate_masks_bu.click(fn=generate_mask, inputs=[img, prompt_mode, text_prompt], outputs=[sam_text, result_num_text, mask_result_num_text])
|
161 |
+
img.select(show_prompt, [img, prompt_mode, pos_point], [result_img, point_coords_text, point_labels_text, boxes_point_text, boxes_text])
|
162 |
+
if __name__ == '__main__':
|
163 |
+
os.system('cd/GroundingDINO && pip install -e. && cd.. && cd segment_anything && pip install -e.')
|
164 |
+
demo.launch()
|