File size: 21,893 Bytes
4b446a4
 
 
 
e75a56a
4b446a4
 
 
2c8ef78
4b446a4
db53d21
 
 
 
e75a56a
db53d21
4b446a4
e75a56a
4b446a4
 
 
 
 
 
 
e75a56a
 
 
 
 
 
d38687b
 
 
 
e038beb
d38687b
4b446a4
 
 
2c8ef78
 
 
 
 
 
 
 
 
9a26334
a4def93
ddc6bd6
 
4b446a4
9a26334
 
 
ddc6bd6
4b446a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c8ef78
2a20515
4b446a4
2c8ef78
4b446a4
 
a4def93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b446a4
da4be0c
4b446a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94f02fe
4b446a4
 
 
 
 
 
 
 
 
 
 
a0c7209
4b446a4
 
e75a56a
ff58dee
4b446a4
 
a0c7209
4b446a4
cc22a40
4b446a4
dd75000
e75a56a
 
 
 
 
 
 
 
 
 
 
 
 
 
c8d4385
 
 
 
 
dd75000
 
 
 
 
 
 
 
 
 
 
 
 
6210314
 
dd75000
6210314
 
dd75000
 
6210314
 
dd75000
 
 
 
 
 
 
 
 
 
 
 
 
4b446a4
e75a56a
 
 
da4be0c
 
 
 
 
 
 
 
 
 
 
9443d34
da4be0c
 
 
 
 
 
 
 
 
072d0a2
 
da4be0c
 
 
 
 
 
 
 
072d0a2
da4be0c
 
 
 
1228435
 
 
 
9a26334
 
1228435
 
 
078af76
1228435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba33e6a
078af76
 
 
 
1228435
 
 
 
 
 
 
 
 
0f7a76d
ff58dee
85e4579
 
1228435
 
 
 
ff58dee
 
 
 
 
bdd552c
 
 
 
dda46f5
 
6210314
ba33e6a
 
2e7d21c
6210314
 
 
 
 
ff58dee
 
6210314
 
 
ff58dee
dda46f5
 
94f02fe
a4def93
ff58dee
 
bdd552c
ff58dee
bdd552c
700842a
e8da674
 
bdd552c
 
e8da674
 
bdd552c
ff58dee
6210314
a0c7209
e8da674
 
6210314
 
ff58dee
 
 
 
a0c7209
 
 
e8da674
 
a0c7209
 
e8da674
 
ff58dee
6210314
 
ff58dee
6210314
 
ff58dee
6210314
 
ff58dee
6210314
 
ff58dee
6210314
ff58dee
 
6210314
ff58dee
32624f0
 
e8da674
 
 
ff58dee
 
 
 
6210314
ff58dee
32624f0
 
ff58dee
0bfd567
ff58dee
 
32624f0
 
 
ff58dee
 
4b446a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
import streamlit as st
import torch
from tqdm import tqdm
from peft import PeftModel, PeftConfig
from transformers import AutoModelForSeq2SeqLM, AutoModelForCausalLM
from transformers import AutoTokenizer
import numpy as np
import time
import string

# JS
import nltk
nltk.download('wordnet')
from nltk.corpus import wordnet as wn
from nltk.tokenize import word_tokenize

@st.cache_resource
def get_models(llama=False):
  st.write('Loading the model...')
  config = PeftConfig.from_pretrained("NursNurs/T5ForReverseDictionary")
  model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-large")
  model = PeftModel.from_pretrained(model, "NursNurs/T5ForReverseDictionary")

  tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large")

  # JS
  if llama:
    model_name = 'meta-llama/Llama-2-7b-chat-hf'
    access_token = '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'
    llama_tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=access_token, use_fast=True)#, use_fast=True)
    llama_model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=access_token, device_map={'':0})#, load_in_4bit=True)
    st.write("The assistant is loaded and ready to use!")
    return model, tokenizer, llama_model, llama_tokenizer 
  
  else:
    st.write("_The assistant is loaded and ready to use! :tada:_")
    return model, tokenizer

model, tokenizer = get_models()

def remove_punctuation(word):
    # Create a translation table that maps all punctuation characters to None
    translator = str.maketrans('', '', string.punctuation)
    
    # Use the translate method to remove punctuation from the word
    word_without_punctuation = word.translate(translator)
    
    return word_without_punctuation

def return_top_k(sentence, k=10, word=None, rels=False):

  if sentence[-1] != ".":
    sentence = sentence + "."

  if rels:
    inputs = [f"Description : It is related to '{word}' but not '{word}'. Word : "]
  else:
    inputs = [f"Description : {sentence} Word : "]

  inputs = tokenizer(
      inputs,
      padding=True, truncation=True,
      return_tensors="pt",
  )
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
  model.to(device)

  with torch.no_grad():
    inputs = {k: v.to(device) for k, v in inputs.items()}
    output_sequences = model.generate(input_ids=inputs["input_ids"], max_new_tokens=10, num_beams=k+5, num_return_sequences=k+5, #max_length=3,
                                              top_p = 50, output_scores=True, return_dict_in_generate=True) #repetition_penalty=10000.0

    logits = output_sequences['sequences_scores'].clone().detach()
    decoded_probabilities = torch.softmax(logits, dim=0)


    #all word predictions
    predictions = [tokenizer.decode(tokens, skip_special_tokens=True) for tokens in output_sequences['sequences']]
    probabilities = [round(float(prob), 2) for prob in decoded_probabilities]

    stripped_sent = [remove_punctuation(word.lower()) for word in sentence.split()]
    for pred in predictions:
      if (len(pred) < 2) | (pred in stripped_sent):
        predictions.pop(predictions.index(pred))  
     
  return predictions[:10] 

# JS 
def get_related_words(word, num=5):
  model.eval()
  with torch.no_grad():
      sentence = [f"Descripton : It is related to {word} but not {word}. Word : "]
      #inputs = ["Description: It is something to cut stuff with. Word: "]
      print(sentence)
      inputs = tokenizer(sentence, padding=True, truncation=True, return_tensors="pt",)

      device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
      model.to(device)

      batch = {k: v.to(device) for k, v in inputs.items()}
      beam_outputs = model.generate(
          input_ids=batch['input_ids'], max_new_tokens=10, num_beams=num+2, num_return_sequences=num+2, early_stopping=True
      )
      
      #beam_preds = [tokenizer.decode(beam_output.detach().cpu().numpy(), skip_special_tokens=True) for beam_output in beam_outputs if ]
      beam_preds = []
      for beam_output in beam_outputs:
          prediction = tokenizer.decode(beam_output.detach().cpu().numpy(), skip_special_tokens=True).strip()
          if prediction not in " ".join(sentence):
            beam_preds.append(prediction)
      
      return ", ".join(beam_preds[:num])

#if 'messages' not in st.session_state:

def get_text():
  input_text = st.chat_input()
  return input_text

def write_bot(input, remember=True, blink=True):
    with st.chat_message('assistant'):
      message_placeholder = st.empty()
      full_response = input
      if blink == True:
        response = ''
        for chunk in full_response.split():
          response += chunk + " "
          time.sleep(0.05)
          # Add a blinking cursor to simulate typing
          message_placeholder.markdown(response + "β–Œ") 
        time.sleep(0.5)
      message_placeholder.markdown(full_response)
    if remember == True:
      st.session_state.messages.append({'role': 'assistant', 'content': full_response})
    
def ask_if_helped():
  y = st.button('Yes!', key=60)
  n = st.button('No...', key=61)
  new = st.button('I have a new word', key=62)
  if y:
    write_bot("I am happy to help!")
    st.session_state.is_helpful['ask'] = False
  elif n:
    st.session_state.actions.append('cue')
    st.session_state.is_helpful['ask'] = False
    #cue_generation()
  elif new:
    write_bot("Please describe your word!")
    st.session_state.is_helpful['ask'] = False

## removed: if st.session_state.actions[-1] == "result":

# JS
def get_related_words_llama(relation, target, device, num=5):
    prompt = f"Provide {num} {relation}s for the word '{target}'. Your answer consists of these {num} words only. Do not include the word '{target}' itself in your answer"

    inputs = tokenizer([prompt], return_tensors='pt').to(device)
    output = model.generate(
        **inputs, max_new_tokens=40, temperature=.75, early_stopping=True, 
        )
    chatbot_response = tokenizer.decode(output[:, inputs['input_ids'].shape[-1]:][0], skip_special_tokens=True).strip()

    postproc = [word for word in word_tokenize(chatbot_response) if len(word)>=3]

    return postproc[-num:] if len(postproc)>=num else postproc


def postproc_wn(related_words, syns=False):
    if syns:
        related_words = [word.split('.')[0] if word[0] != "." else word.split('.')[1] for word in related_words]
    else:
        related_words = [word.name().split('.')[0] if word.name()[0] != "." else word.name().split('.')[1] for word in related_words]
    related_words = [word.replace("_", " ") for word in related_words]

    return related_words

# JS
def get_available_cues(target):
    wn_nouns = [word.name() for word in wn.all_synsets(pos='n')]
    wn_nouns = [word.split('.')[0] if word[0] != "." else word.split('.')[1] for word in wn_nouns]

    if target in wn_nouns:
      available_cues = {}
      synset_target = wn.synsets(target, pos=wn.NOUN)[0]

      #if wn.synonyms(target)[0]:
       #   available_cues['Synonyms'] = postproc_wn(wn.synonyms(target)[0], syns=True)
      
      #if synset_target.hypernyms():
       #   available_cues['Hypernyms'] = postproc_wn(synset_target.hypernyms())


      #if synset_target.hyponyms():
        #  available_cues['Hyponyms'] = postproc_wn(synset_target.hyponyms())

      if synset_target.examples():
          examples = []
          
          for example in synset_target.examples():
              examples.append(example.replace(target, "..."))
                  
          available_cues['Examples'] = examples

      return available_cues

    else:
      return None 

# JS: moved the cue generation further down
#def cue_generation():
 # if st.session_state.actions[-1] == 'cue':

if 'messages' not in st.session_state:
  st.session_state.messages = []
  
if 'results' not in st.session_state:
  st.session_state.results = {'results': False, 'results_print': False}
  
if 'actions' not in st.session_state:
  st.session_state.actions = [""]
  
if 'counters' not in st.session_state:
  st.session_state.counters = {"letter_count": 0, "word_count": 0}
  
if 'is_helpful' not in st.session_state:
  st.session_state.is_helpful = {'ask':False}
  
if 'descriptions' not in st.session_state:
  st.session_state.descriptions = []
  
st.title("You name it! πŸ—£")

# JS: would remove Simon by some neutral avatar
with st.chat_message('user'):
  st.write("Hey assistant!")
  
bot = st.chat_message('assistant')
bot.write("Hello human! Wanna practice naming some words?")

#for showing history of messages
for message in st.session_state.messages:
  if message['role'] == 'user':
    with st.chat_message(message['role']):
      st.markdown(message['content'])
  else:
    with st.chat_message(message['role']):
      st.markdown(message['content'])
  
#display user message in chat message container
prompt = get_text() 
if prompt:
  #JS: would replace Simon by some neutral character 
  with st.chat_message('user'):
    st.markdown(prompt)
  #add to history
  st.session_state.messages.append({'role': 'user', 'content': prompt})
  #TODO: replace it with zero-shot classifier
  yes = ['yes', 'again', 'Yes', 'sure', 'new word', 'yes!', 'yep', 'yeah']
  if prompt in yes:
    write_bot("Please describe your word!")
  elif prompt == 'It is similar to the best place on earth':
    write_bot("Great! Let me think what it could be...")
    time.sleep(3)
    write_bot("Do you mean Saarland?")
  #if previously we asked to give a prompt
  elif (st.session_state.messages[-2]['content'] == "Please describe your word!") & (st.session_state.messages[-1]['content'] != "no"):
    write_bot("Great! Let me think what it could be...")
    st.session_state.descriptions.append(prompt)
    st.session_state.results['results'] = return_top_k(st.session_state.descriptions[-1])
    st.session_state.results['results_print'] = dict(zip(range(1, 11), st.session_state.results['results']))
    write_bot("I think I have some ideas. Do you want to see my guesses or do you want a cue?")
    st.session_state.actions.append("result")

if st.session_state.actions[-1] == "result":
  col1, col2, col3, col4, col5 = st.columns(5)
  with col1:
    a1 = st.button('Results', key=10)
  with col2:
    a2 = st.button('Cue', key=11)
  if a1:
    write_bot("Here are my guesses about your word:")
    st.write(st.session_state.results['results_print'])
    time.sleep(1)
    write_bot('Does it help you remember the word?', remember=False)
    st.session_state.is_helpful['ask'] = True
  elif a2:
    #write_bot(f'The first letter is {st.session_state.results["results"][0][0]}.')
    #time.sleep(1)
    st.session_state.actions.append('cue')
    #cue_generation()
    #write_bot('Does it help you remember the word?', remember=False)
    #st.session_state.is_helpful['ask'] = True
    
if st.session_state.is_helpful['ask']:
    ask_if_helped()

if st.session_state.actions[-1] == 'cue':
  guessed = False
  write_bot('What do you want to see?', remember=False, blink=False)

  while guessed == False:
    # JS
    word_count = st.session_state.counters["word_count"]
    target = st.session_state.results["results"][word_count]
    
    col1, col2, col3, col4, col5 = st.columns(5)
  

    with col1:
      b1 = st.button("Next letter", key="1")
    with col2:
      b2 = st.button("Related words")
    with col3:
      b3 = st.button("Next word", key="2")
    with col4:
      b4 = st.button("All words", key="3")

    # JS
    #if get_available_cues(target):
     # avail_cues = get_available_cues(target)
      #cues_buttons = {cue_type: st.button(cue_type) for cue_type in avail_cues}

    b5 = st.button("I remembered the word!", key="4", type='primary')
    b6 = st.button("Exit", key="5", type='primary')
    new = st.button('Play again', key=64, type='primary')

    if b1:
      st.session_state.counters["letter_count"] += 1
      #word_count = st.session_state.counters["word_count"]
      letter_count = st.session_state.counters["letter_count"]
      if letter_count < len(target):
        write_bot(f'The word starts with {st.session_state.results["results"][word_count][:letter_count]}. \n Does this help you remember the word?', remember=False)
        #ask_if_helped()
        st.session_state.is_helpful['ask'] = True
      else:
        write_bot(f'This is my predicted word: "{target}". Does this match your query?')
        #ask_if_helped()
        st.session_state.is_helpful['ask'] = True

    elif b2:
      rels = return_top_k(st.session_state.descriptions[-1], word=target, rels=True)
      write_bot(f'Here are words that are related to your word: {", ".join(rels)}. \n Does this help you remember the word?', remember=False)
      #ask_if_helped()
      st.session_state.is_helpful['ask'] = True

    elif b3:
      st.session_state.counters["letter_count"] = 1
      letter_count = st.session_state.counters["letter_count"]
      st.session_state.counters["word_count"] += 1
      word_count = st.session_state.counters["word_count"]
      #write_bot(f'The next word starts with {st.session_state.results["results"][word_count][:letter_count]}', remember=False)
      if letter_count < len(target):
        write_bot(f'The next word starts with {st.session_state.results["results"][word_count][:letter_count]}. \n Does this help you remember the word?', remember=False)
        #ask_if_helped()
        st.session_state.is_helpful['ask'] = True
      else:
        write_bot(f'This is my predicted word: "{target}". Does this match your query?')
        #ask_if_helped()
        st.session_state.is_helpful['ask'] = True

    #elif get_available_cues(target) and "Synonyms" in cues_buttons and cues_buttons['Synonyms']:
      #write_bot(f'Here are synonyms for the current word: {", ".join(avail_cues["Synonyms"])}', remember=False)

    #elif get_available_cues(target) and "Hypernyms" in cues_buttons and cues_buttons['Hypernyms']:
      #write_bot(f'Here are hypernyms for the current word: {", ".join(avail_cues["Hypernyms"])}', remember=False)

    #elif get_available_cues(target) and "Hyponyms" in cues_buttons and cues_buttons['Hyponyms']:
      #write_bot(f'Here are hyponyms for the current word: {", ".join(avail_cues["Hyponyms"])}', remember=False)

    #elif get_available_cues(target) and "Examples" in cues_buttons and cues_buttons['Examples']:   
      #write_bot(f'Here are example contexts for the current word: {", ".join(avail_cues["Examples"])}', remember=False)

    elif b4:
      write_bot(f"Here are all my guesses about your word: {st.session_state.results['results_print']}")

    elif b5:
      write_bot("Yay! I am happy I could be of help!")
      st.session_state.counters["word_count"] = 0
      st.session_state.counters["letter_count"] = 0
      new = st.button('Play again', key=63)
      if new:
        write_bot("Please describe your word!")
      guessed = True
    
      break
    
    elif b6:
      write_bot("I am sorry I couldn't help you this time. See you soon!")
      st.session_state.counters["word_count"] = 0
      st.session_state.counters["letter_count"] = 0
    st.session_state.actions.append('cue')
    
    if new:
      write_bot("Please describe your word!")
      st.session_state.counters["word_count"] = 0
      st.session_state.counters["letter_count"] = 0

    break

  # elif prompt == 'results':
  #   st.text("results")
  #   st.write("results")
  #   st.session_state.actions.append({'result': True})
  #   st.write(st.session_state.actions)
  #     with st.chat_message('user'):
  #       custom_response = "Results"
  #       st.markdown(custom_response)
  #     st.session_state.messages.append({'role': 'user', 'content': custom_response})

  #     with st.chat_message('assistant'):
  #       message_placeholder = st.empty()
  #       response = f"Here are my guesses about your word: {result_print}"
  #       message_placeholder.markdown(response + "|")
  #     st.session_state.messages.append({'role': 'assistant', 'content': response})
  #   elif st.button('Cue'):
  #     response = "Cue"
  #     with st.chat_message('user'):
  #       st.markdown(response)
  #     st.session_state.messages.append({'role': 'user', 'content': response})
  #     text = f'The first letter is {result[0][0]}.'
  #     bot.write(text)
  #     st.session_state.messages.append({'role': 'assistant', 'content': text})
  #     letter_count = 1
  #     word_count = 0
  # elif prompt == 'Results':
  #   with st.chat_message('assistant'):
  #       message_placeholder = st.empty()
  #       response = f"Here are my guesses about your word: {result_print}"
  #       message_placeholder.markdown(response + "|")
  #   st.session_state.messages.append({'role': 'assistant', 'content': response})

  # #if you don't wanna practice word naming
  # else:  
  #     with st.chat_message('assistant'):
  #       message_placeholder = st.empty()
  #       response = "See you next time!"
  #       message_placeholder.markdown(response + "|")
  #     st.session_state.messages.append({'role': 'assistant', 'content': response})
      

  
      # if st.button('Results'):
      #   bot.write("Here are my guesses about your word:")
      #   bot.write(result_print)
      # elif st.button('Cue'):
      #   bot.write(f'The first letter is {result[0][0]}.')
      #   letter_count = 1
      #   word_count = 0
      #   answer = st.chat_input('Does it help you remember the word? Type yes or no')
      #   if answer == "no":
      #     bot.write("What do you want to see?")
      #     if st.button('Next letter'):
      #       letter_count += 1
      #       bot.write(f'The word starts with {result[word_count][:letter_count]}')
      #     elif st.button('Next word'):
      #       letter_count = 1
      #       bot.write(f'The next word starts with {result[word_count][:letter_count]}')
      #       word_count += 1
      #     elif st.button('All words'):
      #       bot.write("Here are all my guesses about your word:")
      #       bot.write(result_print)
      #   bot.write("Does this help you remember your word?")
      #   answer = st.chat_input('Type yes/no/exit')
      #   if answer == 'Exit':
      #     st.write("I am sorry I couldn't help you. See you next time!")

      
  #write down assistant's responses
  #response = f'Echo: {prompt}' #echoes prompt
  # with st.chat_message('assistant'):
  #   message_placeholder = st.empty()
  #   full_response = "yeee"
  #   #here insert the loop with the model answers (for response in...)
  #   #this to imitate a cursor
  #   message_placeholder.markdown(full_response + "|")
    
  # #add to history
  # st.session_state.messages.append({'role': 'assistant', 'content': full_response})
  
  
  
##TODO: a button to delete history
# if prompt == 'Yes':
#   bot.write("Great! Please describe the word you have in mind.")
#   sent = st.chat_input('Description of your word')


# # adding the text that will show in the text box as default
# default_value = "Type the description of the word you have in mind!"

# sent = st.text_area("Text", default_value, height = 50)
# result = return_top_k(sent)
# result = ['animal', 'monster', 'creature', 'bird', 'cat', 'human', 'dog', 'spider', 'alien', 'meow']
# result = return_top_k(sent)
# result_print = dict(zip(range(1, 11), result))

# if st.button('Results'):
#   st.write("Here are my guesses about your word:")
#   st.write(result_print)
# elif st.button('Cue'):
#   st.write(f'The first letter is {result[0][0]}.')
#   letter_count = 1
#   word_count = 0
#   answer = st.text_area("Text", 'Does it help you remember the word? Type yes or no', height = 50)
#   if answer == 'No':
#     while answer == 'No':
#       option = st.selectbox(
#       'What do you want to see?',
#       ('Next letter', 'Next word', 'All words'))
#       if option == 'Next letter':
#         letter_count += 1
#         st.write(f'The word starts with {result[word_count][:letter_count]}')
#       elif option == 'Next word':
#         letter_count = 1
#         st.write(f'The next word starts with {result[word_count][:letter_count]}')
#         word_count += 1
#       else:
#         st.write("Here are all my guesses about your word:")
#         st.write(result_print)
#       answer = st.selectbox(
#         'Does it help you remember the word??',
#         ('Yes', 'No', 'Exit'))
#       if answer == 'Exit':
#         st.write("I am sorry I couldn't help you. See you next time!")
#         break
#   else:
#      st.write("I am happy I could be of help!")
# else:
#   st.write('Do you want to see my guesses or do you want a cue?')


#2

# option = st.selectbox(
#     'Do you want to see my guesses or do you want a cue?',
#     ('Results', 'Cue'))

# st.write('You selected:', option)

# if option == 'Results':
#   st.write("Here are my guesses about your word:")
#   st.write(result_print)
# elif option == 'Cue':
#   st.write(f'The first letter is {result[0][0]}.')
#   letter_count = 1
#   word_count = 0
#   answer = st.selectbox(
#     'Does it help you remember the word??',
#     ('Yes', 'No'))
#   if answer == 'No':
#     while answer == 'No':
#       option = st.selectbox(
#       'What do you want to see?',
#       ('Next letter', 'Next word', 'All words'))
#       if option == 'Next letter':
#         letter_count += 1
#         st.write(f'The word starts with {result[word_count][:letter_count]}')
#       elif option == 'Next word':
#         letter_count = 1
#         st.write(f'The next word starts with {result[word_count][:letter_count]}')
#         word_count += 1
#       else:
#         st.write("Here are all my guesses about your word:")
#         st.write(result_print)
#       answer = st.selectbox(
#         'Does it help you remember the word??',
#         ('Yes', 'No', 'Exit'))
#       if answer == 'Exit':
#         st.write("I am sorry I couldn't help you. See you next time!")
#         break
#   else:
#     st.write("I am happy I could be of help!")