NursNurs commited on
Commit
bfa87e1
·
1 Parent(s): a3d3a4d

deleted commented out code

Browse files
Files changed (1) hide show
  1. pages/2_Context-based_chatbot.py +17 -129
pages/2_Context-based_chatbot.py CHANGED
@@ -31,49 +31,16 @@ def remove_punctuation(word):
31
 
32
  return word_without_punctuation
33
 
34
- def return_top_k_context(sentence, word=None, rels=False):
35
 
36
  if sentence[-1] != ".":
37
  sentence = sentence + "."
38
-
39
- # if rels:
40
- # inputs = [f"Description : It is related to '{word}' but not '{word}'. Word : "]
41
- # else:
42
- # inputs = [f"Description : {sentence} Word : "]
43
 
44
  output = model_context(sentence)
45
  output = [output[i]['token_str'].strip() for i in range(len(output))]
46
  return output
47
 
48
 
49
- # JS
50
- # def get_related_words(word, num=5):
51
- # model.eval()
52
- # with torch.no_grad():
53
- # sentence = [f"Descripton : It is related to {word} but not {word}. Word : "]
54
- # #inputs = ["Description: It is something to cut stuff with. Word: "]
55
- # print(sentence)
56
- # inputs = tokenizer(sentence, padding=True, truncation=True, return_tensors="pt",)
57
-
58
- # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
59
- # model.to(device)
60
-
61
- # batch = {k: v.to(device) for k, v in inputs.items()}
62
- # beam_outputs = model.generate(
63
- # input_ids=batch['input_ids'], max_new_tokens=10, num_beams=num+2, num_return_sequences=num+2, early_stopping=True
64
- # )
65
-
66
- # #beam_preds = [tokenizer.decode(beam_output.detach().cpu().numpy(), skip_special_tokens=True) for beam_output in beam_outputs if ]
67
- # beam_preds = []
68
- # for beam_output in beam_outputs:
69
- # prediction = tokenizer.decode(beam_output.detach().cpu().numpy(), skip_special_tokens=True).strip()
70
- # if prediction not in " ".join(sentence):
71
- # beam_preds.append(prediction)
72
-
73
- # return ", ".join(beam_preds[:num])
74
-
75
- #if 'messages_context' not in st.session_state:
76
-
77
  def get_text():
78
  input_text = st.chat_input()
79
  return input_text
@@ -112,22 +79,6 @@ def ask_if_helped_context():
112
  write_bot("Please give a sentence using a <mask> instead of the word you have in mind!")
113
  st.session_state.is_helpful_context['ask'] = False
114
 
115
- ## removed: if st.session_state.actions_context[-1] == "result":
116
-
117
- # JS
118
- # def get_related_words_llama(relation, target, device, num=5):
119
- # prompt_context = f"Provide {num} {relation}s for the word '{target}'. Your answer consists of these {num} words only. Do not include the word '{target}' itself in your answer"
120
-
121
- # inputs = tokenizer([prompt_context], return_tensors='pt').to(device)
122
- # output = model.generate(
123
- # **inputs, max_new_tokens=40, temperature=.75, early_stopping=True,
124
- # )
125
- # chatbot_response = tokenizer.decode(output[:, inputs['input_ids'].shape[-1]:][0], skip_special_tokens=True).strip()
126
-
127
- # postproc = [word for word in word_tokenize(chatbot_response) if len(word)>=3]
128
-
129
- # return postproc[-num:] if len(postproc)>=num else postproc
130
-
131
 
132
  def postproc_wn(related_words, syns=False):
133
  if syns:
@@ -137,43 +88,7 @@ def postproc_wn(related_words, syns=False):
137
  related_words = [word.replace("_", " ") for word in related_words]
138
 
139
  return related_words
140
-
141
- # JS
142
- def get_available_cues(target):
143
- wn_nouns = [word.name() for word in wn.all_synsets(pos='n')]
144
- wn_nouns = [word.split('.')[0] if word[0] != "." else word.split('.')[1] for word in wn_nouns]
145
-
146
- if target in wn_nouns:
147
- available_cues = {}
148
- synset_target = wn.synsets(target, pos=wn.NOUN)[0]
149
-
150
- #if wn.synonyms(target)[0]:
151
- # available_cues['Synonyms'] = postproc_wn(wn.synonyms(target)[0], syns=True)
152
-
153
- #if synset_target.hypernyms():
154
- # available_cues['Hypernyms'] = postproc_wn(synset_target.hypernyms())
155
-
156
-
157
- #if synset_target.hyponyms():
158
- # available_cues['Hyponyms'] = postproc_wn(synset_target.hyponyms())
159
-
160
- if synset_target.examples():
161
- examples = []
162
-
163
- for example in synset_target.examples():
164
- examples.append(example.replace(target, "..."))
165
-
166
- available_cues['Examples'] = examples
167
-
168
- return available_cues
169
-
170
- else:
171
- return None
172
-
173
- # JS: moved the cue generation further down
174
- #def cue_generation():
175
- # if st.session_state.actions_context[-1] == 'cue':
176
-
177
  if 'messages_context' not in st.session_state:
178
  st.session_state.messages_context = []
179
 
@@ -194,7 +109,6 @@ if 'descriptions_context' not in st.session_state:
194
 
195
  st.title("You name it! 🗣")
196
 
197
- # JS: would remove Simon by some neutral avatar
198
  with st.chat_message('user', avatar='julian.jpg'):
199
  st.write("Hey assistant!")
200
 
@@ -213,28 +127,26 @@ for message in st.session_state.messages_context:
213
  #display user message in chat message container
214
  prompt_context = get_text()
215
  if prompt_context:
216
- #JS: would replace Simon by some neutral character
217
  with st.chat_message('user', avatar="julian.jpg"):
218
  st.markdown(prompt_context)
219
  #add to history
220
  st.session_state.messages_context.append({'role': 'user', 'content': prompt_context})
221
  #TODO: replace it with zero-shot classifier
222
- yes = ['yes', 'again', 'Yes', 'sure', 'new word', 'yes!', 'yep', 'yeah']
223
- if prompt_context in yes:
224
- write_bot("Please give a sentence using a <mask> instead of the word you have in mind!")
225
- elif prompt_context == 'it is similar to the best place on earth':
226
- write_bot("Great! Let me think what it could be...")
227
- time.sleep(3)
228
- write_bot("Do you mean Saarland?")
229
- #if previously we asked to give a prompt_context
230
- elif (st.session_state.messages_context[-2]['content'] == "Please give a sentence using a <mask> instead of the word you have in mind!") & (st.session_state.messages_context[-1]['content'] != "no"):
231
- write_bot("Great! Let me think what it could be...")
232
- st.session_state.descriptions_context.append(prompt_context)
233
- st.session_state.results_context['results_context'] = return_top_k_context(st.session_state.descriptions_context[-1])
234
- st.session_state.results_context['results_context_print'] = dict(zip(range(1, len(st.session_state.results_context['results_context'])+1), st.session_state.results_context['results_context']))
235
- write_bot("I think I have some ideas. Do you want to see my guesses or do you want a cue?")
236
- st.session_state.actions_context.append("result")
237
-
238
  if st.session_state.actions_context[-1] == "result":
239
  col1, col2, col3, col4, col5 = st.columns(5)
240
  with col1:
@@ -273,11 +185,6 @@ if st.session_state.actions_context[-1] == 'cue':
273
  with col4:
274
  b4 = st.button("All words", key="3")
275
 
276
- # JS
277
- #if get_available_cues(target):
278
- # avail_cues = get_available_cues(target)
279
- #cues_buttons = {cue_type: st.button(cue_type) for cue_type in avail_cues}
280
-
281
  b5 = st.button("I remembered the word!", key="4", type='primary')
282
  b6 = st.button("Exit", key="5", type='primary')
283
  new = st.button('Play again', key=64, type='primary')
@@ -288,21 +195,17 @@ if st.session_state.actions_context[-1] == 'cue':
288
 
289
  if b1:
290
  st.session_state.counter_context["letter_count"] += 1
291
- #word_count = st.session_state.counter_context["word_count"]
292
  letter_count = st.session_state.counter_context["letter_count"]
293
  if letter_count < len(target):
294
  write_bot(f'The word starts with {st.session_state.results_context["results_context"][word_count][:letter_count]}.', remember=False)
295
- #ask_if_helped_context()
296
  st.session_state.is_helpful_context['ask'] = True
297
  else:
298
  write_bot(f'This is my predicted word: "{target}". Does this match your query?')
299
- #ask_if_helped_context()
300
  st.session_state.is_helpful_context['ask'] = True
301
 
302
  elif b2:
303
  rels = return_top_k_context(st.session_state.descriptions_context[-1], word=target, rels=True)
304
  write_bot(f'Here are words that are related to your word: {", ".join(rels)}.', remember=False)
305
- #ask_if_helped_context()
306
  st.session_state.is_helpful_context['ask'] = True
307
 
308
  elif b3:
@@ -310,28 +213,13 @@ if st.session_state.actions_context[-1] == 'cue':
310
  letter_count = st.session_state.counter_context["letter_count"]
311
  st.session_state.counter_context["word_count"] += 1
312
  word_count = st.session_state.counter_context["word_count"]
313
- #write_bot(f'The next word starts with {st.session_state.results_context["results_context"][word_count][:letter_count]}', remember=False)
314
  if letter_count < len(target):
315
  write_bot(f'The next word starts with {st.session_state.results_context["results_context"][word_count][:letter_count]}.', remember=False)
316
- #ask_if_helped_context()
317
  st.session_state.is_helpful_context['ask'] = True
318
  else:
319
  write_bot(f'This is my predicted word: "{target}". Does this match your query?')
320
- #ask_if_helped_context()
321
  st.session_state.is_helpful_context['ask'] = True
322
 
323
- #elif get_available_cues(target) and "Synonyms" in cues_buttons and cues_buttons['Synonyms']:
324
- #write_bot(f'Here are synonyms for the current word: {", ".join(avail_cues["Synonyms"])}', remember=False)
325
-
326
- #elif get_available_cues(target) and "Hypernyms" in cues_buttons and cues_buttons['Hypernyms']:
327
- #write_bot(f'Here are hypernyms for the current word: {", ".join(avail_cues["Hypernyms"])}', remember=False)
328
-
329
- #elif get_available_cues(target) and "Hyponyms" in cues_buttons and cues_buttons['Hyponyms']:
330
- #write_bot(f'Here are hyponyms for the current word: {", ".join(avail_cues["Hyponyms"])}', remember=False)
331
-
332
- #elif get_available_cues(target) and "Examples" in cues_buttons and cues_buttons['Examples']:
333
- #write_bot(f'Here are example contexts for the current word: {", ".join(avail_cues["Examples"])}', remember=False)
334
-
335
  elif b4:
336
  write_bot(f"Here are all my guesses about your word: {st.session_state.results_context['results_context_print']}")
337
  st.session_state.is_helpful_context['ask'] = True
 
31
 
32
  return word_without_punctuation
33
 
34
+ def return_top_k_context(sentence):
35
 
36
  if sentence[-1] != ".":
37
  sentence = sentence + "."
 
 
 
 
 
38
 
39
  output = model_context(sentence)
40
  output = [output[i]['token_str'].strip() for i in range(len(output))]
41
  return output
42
 
43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
  def get_text():
45
  input_text = st.chat_input()
46
  return input_text
 
79
  write_bot("Please give a sentence using a <mask> instead of the word you have in mind!")
80
  st.session_state.is_helpful_context['ask'] = False
81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82
 
83
  def postproc_wn(related_words, syns=False):
84
  if syns:
 
88
  related_words = [word.replace("_", " ") for word in related_words]
89
 
90
  return related_words
91
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92
  if 'messages_context' not in st.session_state:
93
  st.session_state.messages_context = []
94
 
 
109
 
110
  st.title("You name it! 🗣")
111
 
 
112
  with st.chat_message('user', avatar='julian.jpg'):
113
  st.write("Hey assistant!")
114
 
 
127
  #display user message in chat message container
128
  prompt_context = get_text()
129
  if prompt_context:
 
130
  with st.chat_message('user', avatar="julian.jpg"):
131
  st.markdown(prompt_context)
132
  #add to history
133
  st.session_state.messages_context.append({'role': 'user', 'content': prompt_context})
134
  #TODO: replace it with zero-shot classifier
135
+ yes = ['yes', 'again', 'sure', 'new word', 'yes!', 'yep', 'yeah']
136
+ try:
137
+ if prompt_context.lower() in yes:
138
+ write_bot("Please give a sentence using a <mask> instead of the word you have in mind!")
139
+ #if previously we asked to give a prompt_context
140
+ elif (st.session_state.messages_context[-2]['content'] == "Please give a sentence using a <mask> instead of the word you have in mind!") & (st.session_state.messages_context[-1]['content'] != "no"):
141
+ write_bot("Great! Let me think what it could be...")
142
+ st.session_state.descriptions_context.append(prompt_context)
143
+ st.session_state.results_context['results_context'] = return_top_k_context(st.session_state.descriptions_context[-1])
144
+ st.session_state.results_context['results_context_print'] = dict(zip(range(1, len(st.session_state.results_context['results_context'])+1), st.session_state.results_context['results_context']))
145
+ write_bot("I think I have some ideas. Do you want to see my guesses or do you want a cue?")
146
+ st.session_state.actions_context.append("result")
147
+ except:
148
+ write_bot("Sorry, I didn't understand you... I am still learning :sob: For now, could you respond with 'yes' or 'no'? ")
149
+
 
150
  if st.session_state.actions_context[-1] == "result":
151
  col1, col2, col3, col4, col5 = st.columns(5)
152
  with col1:
 
185
  with col4:
186
  b4 = st.button("All words", key="3")
187
 
 
 
 
 
 
188
  b5 = st.button("I remembered the word!", key="4", type='primary')
189
  b6 = st.button("Exit", key="5", type='primary')
190
  new = st.button('Play again', key=64, type='primary')
 
195
 
196
  if b1:
197
  st.session_state.counter_context["letter_count"] += 1
 
198
  letter_count = st.session_state.counter_context["letter_count"]
199
  if letter_count < len(target):
200
  write_bot(f'The word starts with {st.session_state.results_context["results_context"][word_count][:letter_count]}.', remember=False)
 
201
  st.session_state.is_helpful_context['ask'] = True
202
  else:
203
  write_bot(f'This is my predicted word: "{target}". Does this match your query?')
 
204
  st.session_state.is_helpful_context['ask'] = True
205
 
206
  elif b2:
207
  rels = return_top_k_context(st.session_state.descriptions_context[-1], word=target, rels=True)
208
  write_bot(f'Here are words that are related to your word: {", ".join(rels)}.', remember=False)
 
209
  st.session_state.is_helpful_context['ask'] = True
210
 
211
  elif b3:
 
213
  letter_count = st.session_state.counter_context["letter_count"]
214
  st.session_state.counter_context["word_count"] += 1
215
  word_count = st.session_state.counter_context["word_count"]
 
216
  if letter_count < len(target):
217
  write_bot(f'The next word starts with {st.session_state.results_context["results_context"][word_count][:letter_count]}.', remember=False)
 
218
  st.session_state.is_helpful_context['ask'] = True
219
  else:
220
  write_bot(f'This is my predicted word: "{target}". Does this match your query?')
 
221
  st.session_state.is_helpful_context['ask'] = True
222
 
 
 
 
 
 
 
 
 
 
 
 
 
223
  elif b4:
224
  write_bot(f"Here are all my guesses about your word: {st.session_state.results_context['results_context_print']}")
225
  st.session_state.is_helpful_context['ask'] = True