Spaces:
Sleeping
Sleeping
2 modes added
Browse files- pages/1_Descriptive_chatbot.py +407 -0
- pages/2_Context-based_chatbot.py +363 -0
- pages/App.py +25 -0
pages/1_Descriptive_chatbot.py
ADDED
@@ -0,0 +1,407 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from tqdm import tqdm
|
4 |
+
from peft import PeftModel, PeftConfig
|
5 |
+
from transformers import AutoModelForSeq2SeqLM, AutoModelForCausalLM
|
6 |
+
from transformers import AutoTokenizer
|
7 |
+
import numpy as np
|
8 |
+
import time
|
9 |
+
import string
|
10 |
+
|
11 |
+
|
12 |
+
# JS
|
13 |
+
import nltk
|
14 |
+
nltk.download('wordnet')
|
15 |
+
from nltk.corpus import wordnet as wn
|
16 |
+
from nltk.tokenize import word_tokenize
|
17 |
+
|
18 |
+
@st.cache_resource
|
19 |
+
def get_models(llama=False):
|
20 |
+
st.write('Loading the model...')
|
21 |
+
# config = PeftConfig.from_pretrained("NursNurs/T5ForReverseDictionary")
|
22 |
+
# model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-large")
|
23 |
+
# model = PeftModel.from_pretrained(model, "NursNurs/T5ForReverseDictionary")
|
24 |
+
|
25 |
+
config = PeftConfig.from_pretrained("YouNameIt/T5ForReverseDictionary_prefix_tuned")
|
26 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-large")
|
27 |
+
model = PeftModel.from_pretrained(model, "YouNameIt/T5ForReverseDictionary_prefix_tuned")
|
28 |
+
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large")
|
30 |
+
|
31 |
+
# JS
|
32 |
+
if llama:
|
33 |
+
model_name = 'meta-llama/Llama-2-7b-chat-hf'
|
34 |
+
access_token = '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'
|
35 |
+
llama_tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=access_token, use_fast=True)#, use_fast=True)
|
36 |
+
llama_model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=access_token, device_map={'':0})#, load_in_4bit=True)
|
37 |
+
st.write("The assistant is loaded and ready to use!")
|
38 |
+
return model, tokenizer, llama_model, llama_tokenizer
|
39 |
+
|
40 |
+
else:
|
41 |
+
st.write("_The assistant is loaded and ready to use! :tada:_")
|
42 |
+
return model, tokenizer
|
43 |
+
|
44 |
+
model, tokenizer = get_models()
|
45 |
+
|
46 |
+
def remove_punctuation(word):
|
47 |
+
# Create a translation table that maps all punctuation characters to None
|
48 |
+
translator = str.maketrans('', '', string.punctuation)
|
49 |
+
|
50 |
+
# Use the translate method to remove punctuation from the word
|
51 |
+
word_without_punctuation = word.translate(translator)
|
52 |
+
|
53 |
+
return word_without_punctuation
|
54 |
+
|
55 |
+
def return_top_k(sentence, k=10, word=None, rels=False):
|
56 |
+
|
57 |
+
if sentence[-1] != ".":
|
58 |
+
sentence = sentence + "."
|
59 |
+
|
60 |
+
if rels:
|
61 |
+
inputs = [f"Description : It is related to '{word}' but not '{word}'. Word : "]
|
62 |
+
else:
|
63 |
+
inputs = [f"Description : {sentence} Word : "]
|
64 |
+
|
65 |
+
inputs = tokenizer(
|
66 |
+
inputs,
|
67 |
+
padding=True, truncation=True,
|
68 |
+
return_tensors="pt",
|
69 |
+
)
|
70 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
71 |
+
model.to(device)
|
72 |
+
|
73 |
+
with torch.no_grad():
|
74 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
75 |
+
output_sequences = model.generate(input_ids=inputs["input_ids"], max_new_tokens=10, num_beams=k+5, num_return_sequences=k+5, #max_length=3,
|
76 |
+
top_p = 50, output_scores=True, return_dict_in_generate=True) #repetition_penalty=10000.0
|
77 |
+
|
78 |
+
logits = output_sequences['sequences_scores'].clone().detach()
|
79 |
+
decoded_probabilities = torch.softmax(logits, dim=0)
|
80 |
+
|
81 |
+
|
82 |
+
#all word predictions
|
83 |
+
predictions = [tokenizer.decode(tokens, skip_special_tokens=True) for tokens in output_sequences['sequences']]
|
84 |
+
probabilities = [round(float(prob), 2) for prob in decoded_probabilities]
|
85 |
+
|
86 |
+
stripped_sent = [remove_punctuation(word.lower()) for word in sentence.split()]
|
87 |
+
for pred in predictions:
|
88 |
+
if (len(pred) < 2) | (pred in stripped_sent):
|
89 |
+
predictions.pop(predictions.index(pred))
|
90 |
+
|
91 |
+
return predictions[:10]
|
92 |
+
|
93 |
+
# JS
|
94 |
+
def get_related_words(word, num=5):
|
95 |
+
model.eval()
|
96 |
+
with torch.no_grad():
|
97 |
+
sentence = [f"Descripton : It is related to {word} but not {word}. Word : "]
|
98 |
+
#inputs = ["Description: It is something to cut stuff with. Word: "]
|
99 |
+
print(sentence)
|
100 |
+
inputs = tokenizer(sentence, padding=True, truncation=True, return_tensors="pt",)
|
101 |
+
|
102 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
103 |
+
model.to(device)
|
104 |
+
|
105 |
+
batch = {k: v.to(device) for k, v in inputs.items()}
|
106 |
+
beam_outputs = model.generate(
|
107 |
+
input_ids=batch['input_ids'], max_new_tokens=10, num_beams=num+2, num_return_sequences=num+2, early_stopping=True
|
108 |
+
)
|
109 |
+
|
110 |
+
#beam_preds = [tokenizer.decode(beam_output.detach().cpu().numpy(), skip_special_tokens=True) for beam_output in beam_outputs if ]
|
111 |
+
beam_preds = []
|
112 |
+
for beam_output in beam_outputs:
|
113 |
+
prediction = tokenizer.decode(beam_output.detach().cpu().numpy(), skip_special_tokens=True).strip()
|
114 |
+
if prediction not in " ".join(sentence):
|
115 |
+
beam_preds.append(prediction)
|
116 |
+
|
117 |
+
return ", ".join(beam_preds[:num])
|
118 |
+
|
119 |
+
#if 'messages' not in st.session_state:
|
120 |
+
|
121 |
+
def get_text():
|
122 |
+
input_text = st.chat_input()
|
123 |
+
return input_text
|
124 |
+
|
125 |
+
def write_bot(input, remember=True, blink=True):
|
126 |
+
with st.chat_message('assistant'):
|
127 |
+
message_placeholder = st.empty()
|
128 |
+
full_response = input
|
129 |
+
if blink == True:
|
130 |
+
response = ''
|
131 |
+
for chunk in full_response.split():
|
132 |
+
response += chunk + " "
|
133 |
+
time.sleep(0.05)
|
134 |
+
# Add a blinking cursor to simulate typing
|
135 |
+
message_placeholder.markdown(response + "β")
|
136 |
+
time.sleep(0.5)
|
137 |
+
message_placeholder.markdown(full_response)
|
138 |
+
if remember == True:
|
139 |
+
st.session_state.messages.append({'role': 'assistant', 'content': full_response})
|
140 |
+
|
141 |
+
def ask_if_helped():
|
142 |
+
y = st.button('Yes!', key=60)
|
143 |
+
n = st.button('No...', key=61)
|
144 |
+
new = st.button('I have a new word', key=62)
|
145 |
+
if y:
|
146 |
+
write_bot("I am happy to help!")
|
147 |
+
again = st.button('Play again')
|
148 |
+
if again:
|
149 |
+
write_bot("Please describe your word!")
|
150 |
+
st.session_state.is_helpful['ask'] = False
|
151 |
+
elif n:
|
152 |
+
st.session_state.actions.append('cue')
|
153 |
+
st.session_state.is_helpful['ask'] = False
|
154 |
+
#cue_generation()
|
155 |
+
elif new:
|
156 |
+
write_bot("Please describe your word!")
|
157 |
+
st.session_state.is_helpful['ask'] = False
|
158 |
+
|
159 |
+
## removed: if st.session_state.actions[-1] == "result":
|
160 |
+
|
161 |
+
# JS
|
162 |
+
def get_related_words_llama(relation, target, device, num=5):
|
163 |
+
prompt = f"Provide {num} {relation}s for the word '{target}'. Your answer consists of these {num} words only. Do not include the word '{target}' itself in your answer"
|
164 |
+
|
165 |
+
inputs = tokenizer([prompt], return_tensors='pt').to(device)
|
166 |
+
output = model.generate(
|
167 |
+
**inputs, max_new_tokens=40, temperature=.75, early_stopping=True,
|
168 |
+
)
|
169 |
+
chatbot_response = tokenizer.decode(output[:, inputs['input_ids'].shape[-1]:][0], skip_special_tokens=True).strip()
|
170 |
+
|
171 |
+
postproc = [word for word in word_tokenize(chatbot_response) if len(word)>=3]
|
172 |
+
|
173 |
+
return postproc[-num:] if len(postproc)>=num else postproc
|
174 |
+
|
175 |
+
|
176 |
+
def postproc_wn(related_words, syns=False):
|
177 |
+
if syns:
|
178 |
+
related_words = [word.split('.')[0] if word[0] != "." else word.split('.')[1] for word in related_words]
|
179 |
+
else:
|
180 |
+
related_words = [word.name().split('.')[0] if word.name()[0] != "." else word.name().split('.')[1] for word in related_words]
|
181 |
+
related_words = [word.replace("_", " ") for word in related_words]
|
182 |
+
|
183 |
+
return related_words
|
184 |
+
|
185 |
+
# JS
|
186 |
+
def get_available_cues(target):
|
187 |
+
wn_nouns = [word.name() for word in wn.all_synsets(pos='n')]
|
188 |
+
wn_nouns = [word.split('.')[0] if word[0] != "." else word.split('.')[1] for word in wn_nouns]
|
189 |
+
|
190 |
+
if target in wn_nouns:
|
191 |
+
available_cues = {}
|
192 |
+
synset_target = wn.synsets(target, pos=wn.NOUN)[0]
|
193 |
+
|
194 |
+
#if wn.synonyms(target)[0]:
|
195 |
+
# available_cues['Synonyms'] = postproc_wn(wn.synonyms(target)[0], syns=True)
|
196 |
+
|
197 |
+
#if synset_target.hypernyms():
|
198 |
+
# available_cues['Hypernyms'] = postproc_wn(synset_target.hypernyms())
|
199 |
+
|
200 |
+
|
201 |
+
#if synset_target.hyponyms():
|
202 |
+
# available_cues['Hyponyms'] = postproc_wn(synset_target.hyponyms())
|
203 |
+
|
204 |
+
if synset_target.examples():
|
205 |
+
examples = []
|
206 |
+
|
207 |
+
for example in synset_target.examples():
|
208 |
+
examples.append(example.replace(target, "..."))
|
209 |
+
|
210 |
+
available_cues['Examples'] = examples
|
211 |
+
|
212 |
+
return available_cues
|
213 |
+
|
214 |
+
else:
|
215 |
+
return None
|
216 |
+
|
217 |
+
# JS: moved the cue generation further down
|
218 |
+
#def cue_generation():
|
219 |
+
# if st.session_state.actions[-1] == 'cue':
|
220 |
+
|
221 |
+
if 'messages' not in st.session_state:
|
222 |
+
st.session_state.messages = []
|
223 |
+
|
224 |
+
if 'results' not in st.session_state:
|
225 |
+
st.session_state.results = {'results': False, 'results_print': False}
|
226 |
+
|
227 |
+
if 'actions' not in st.session_state:
|
228 |
+
st.session_state.actions = [""]
|
229 |
+
|
230 |
+
if 'counters' not in st.session_state:
|
231 |
+
st.session_state.counters = {"letter_count": 0, "word_count": 0}
|
232 |
+
|
233 |
+
if 'is_helpful' not in st.session_state:
|
234 |
+
st.session_state.is_helpful = {'ask':False}
|
235 |
+
|
236 |
+
if 'descriptions' not in st.session_state:
|
237 |
+
st.session_state.descriptions = []
|
238 |
+
|
239 |
+
st.title("You name it! π£")
|
240 |
+
|
241 |
+
# JS: would remove Simon by some neutral avatar
|
242 |
+
with st.chat_message('user'):
|
243 |
+
st.write("Hey assistant!")
|
244 |
+
|
245 |
+
bot = st.chat_message('assistant')
|
246 |
+
bot.write("Hello human! Wanna practice naming some words?")
|
247 |
+
|
248 |
+
#for showing history of messages
|
249 |
+
for message in st.session_state.messages:
|
250 |
+
if message['role'] == 'user':
|
251 |
+
with st.chat_message(message['role']):
|
252 |
+
st.markdown(message['content'])
|
253 |
+
else:
|
254 |
+
with st.chat_message(message['role']):
|
255 |
+
st.markdown(message['content'])
|
256 |
+
|
257 |
+
#display user message in chat message container
|
258 |
+
prompt = get_text()
|
259 |
+
if prompt:
|
260 |
+
#JS: would replace Simon by some neutral character
|
261 |
+
with st.chat_message('user'):
|
262 |
+
st.markdown(prompt)
|
263 |
+
#add to history
|
264 |
+
st.session_state.messages.append({'role': 'user', 'content': prompt})
|
265 |
+
#TODO: replace it with zero-shot classifier
|
266 |
+
yes = ['yes', 'again', 'Yes', 'sure', 'new word', 'yes!', 'yep', 'yeah']
|
267 |
+
if prompt in yes:
|
268 |
+
write_bot("Please describe your word!")
|
269 |
+
elif prompt == 'it is similar to the best place on earth':
|
270 |
+
write_bot("Great! Let me think what it could be...")
|
271 |
+
time.sleep(3)
|
272 |
+
write_bot("Do you mean Saarland?")
|
273 |
+
#if previously we asked to give a prompt
|
274 |
+
elif (st.session_state.messages[-2]['content'] == "Please describe your word!") & (st.session_state.messages[-1]['content'] != "no"):
|
275 |
+
write_bot("Great! Let me think what it could be...")
|
276 |
+
st.session_state.descriptions.append(prompt)
|
277 |
+
st.session_state.results['results'] = return_top_k(st.session_state.descriptions[-1])
|
278 |
+
st.session_state.results['results_print'] = dict(zip(range(1, 11), st.session_state.results['results']))
|
279 |
+
write_bot("I think I have some ideas. Do you want to see my guesses or do you want a cue?")
|
280 |
+
st.session_state.actions.append("result")
|
281 |
+
|
282 |
+
if st.session_state.actions[-1] == "result":
|
283 |
+
col1, col2, col3, col4, col5 = st.columns(5)
|
284 |
+
with col1:
|
285 |
+
a1 = st.button('Results', key=10)
|
286 |
+
with col2:
|
287 |
+
a2 = st.button('Cue', key=11)
|
288 |
+
if a1:
|
289 |
+
write_bot("Here are my guesses about your word:")
|
290 |
+
st.write(st.session_state.results['results_print'])
|
291 |
+
time.sleep(1)
|
292 |
+
write_bot('Does it help you remember the word?', remember=False)
|
293 |
+
st.session_state.is_helpful['ask'] = True
|
294 |
+
elif a2:
|
295 |
+
#write_bot(f'The first letter is {st.session_state.results["results"][0][0]}.')
|
296 |
+
#time.sleep(1)
|
297 |
+
st.session_state.actions.append('cue')
|
298 |
+
#cue_generation()
|
299 |
+
#write_bot('Does it help you remember the word?', remember=False)
|
300 |
+
#st.session_state.is_helpful['ask'] = True
|
301 |
+
|
302 |
+
if st.session_state.is_helpful['ask']:
|
303 |
+
ask_if_helped()
|
304 |
+
|
305 |
+
if st.session_state.actions[-1] == 'cue':
|
306 |
+
guessed = False
|
307 |
+
write_bot('What do you want to see?', remember=False, blink=False)
|
308 |
+
|
309 |
+
while guessed == False:
|
310 |
+
# JS
|
311 |
+
word_count = st.session_state.counters["word_count"]
|
312 |
+
target = st.session_state.results["results"][word_count]
|
313 |
+
|
314 |
+
col1, col2, col3, col4, col5 = st.columns(5)
|
315 |
+
|
316 |
+
|
317 |
+
with col1:
|
318 |
+
b1 = st.button("Next letter", key="1")
|
319 |
+
with col2:
|
320 |
+
b2 = st.button("Related words")
|
321 |
+
with col3:
|
322 |
+
b3 = st.button("Next word", key="2")
|
323 |
+
with col4:
|
324 |
+
b4 = st.button("All words", key="3")
|
325 |
+
|
326 |
+
# JS
|
327 |
+
#if get_available_cues(target):
|
328 |
+
# avail_cues = get_available_cues(target)
|
329 |
+
#cues_buttons = {cue_type: st.button(cue_type) for cue_type in avail_cues}
|
330 |
+
|
331 |
+
b5 = st.button("I remembered the word!", key="4", type='primary')
|
332 |
+
b6 = st.button("Exit", key="5", type='primary')
|
333 |
+
new = st.button('Play again', key=64, type='primary')
|
334 |
+
|
335 |
+
if b1:
|
336 |
+
st.session_state.counters["letter_count"] += 1
|
337 |
+
#word_count = st.session_state.counters["word_count"]
|
338 |
+
letter_count = st.session_state.counters["letter_count"]
|
339 |
+
if letter_count < len(target):
|
340 |
+
write_bot(f'The word starts with {st.session_state.results["results"][word_count][:letter_count]}. \n Does this help you remember the word?', remember=False)
|
341 |
+
#ask_if_helped()
|
342 |
+
st.session_state.is_helpful['ask'] = True
|
343 |
+
else:
|
344 |
+
write_bot(f'This is my predicted word: "{target}". Does this match your query?')
|
345 |
+
#ask_if_helped()
|
346 |
+
st.session_state.is_helpful['ask'] = True
|
347 |
+
|
348 |
+
elif b2:
|
349 |
+
rels = return_top_k(st.session_state.descriptions[-1], word=target, rels=True)
|
350 |
+
write_bot(f'Here are words that are related to your word: {", ".join(rels)}. \n Does this help you remember the word?', remember=False)
|
351 |
+
#ask_if_helped()
|
352 |
+
st.session_state.is_helpful['ask'] = True
|
353 |
+
|
354 |
+
elif b3:
|
355 |
+
st.session_state.counters["letter_count"] = 1
|
356 |
+
letter_count = st.session_state.counters["letter_count"]
|
357 |
+
st.session_state.counters["word_count"] += 1
|
358 |
+
word_count = st.session_state.counters["word_count"]
|
359 |
+
#write_bot(f'The next word starts with {st.session_state.results["results"][word_count][:letter_count]}', remember=False)
|
360 |
+
if letter_count < len(target):
|
361 |
+
write_bot(f'The next word starts with {st.session_state.results["results"][word_count][:letter_count]}. \n Does this help you remember the word?', remember=False)
|
362 |
+
#ask_if_helped()
|
363 |
+
st.session_state.is_helpful['ask'] = True
|
364 |
+
else:
|
365 |
+
write_bot(f'This is my predicted word: "{target}". Does this match your query?')
|
366 |
+
#ask_if_helped()
|
367 |
+
st.session_state.is_helpful['ask'] = True
|
368 |
+
|
369 |
+
#elif get_available_cues(target) and "Synonyms" in cues_buttons and cues_buttons['Synonyms']:
|
370 |
+
#write_bot(f'Here are synonyms for the current word: {", ".join(avail_cues["Synonyms"])}', remember=False)
|
371 |
+
|
372 |
+
#elif get_available_cues(target) and "Hypernyms" in cues_buttons and cues_buttons['Hypernyms']:
|
373 |
+
#write_bot(f'Here are hypernyms for the current word: {", ".join(avail_cues["Hypernyms"])}', remember=False)
|
374 |
+
|
375 |
+
#elif get_available_cues(target) and "Hyponyms" in cues_buttons and cues_buttons['Hyponyms']:
|
376 |
+
#write_bot(f'Here are hyponyms for the current word: {", ".join(avail_cues["Hyponyms"])}', remember=False)
|
377 |
+
|
378 |
+
#elif get_available_cues(target) and "Examples" in cues_buttons and cues_buttons['Examples']:
|
379 |
+
#write_bot(f'Here are example contexts for the current word: {", ".join(avail_cues["Examples"])}', remember=False)
|
380 |
+
|
381 |
+
elif b4:
|
382 |
+
write_bot(f"Here are all my guesses about your word: {st.session_state.results['results_print']}")
|
383 |
+
|
384 |
+
elif b5:
|
385 |
+
write_bot("Yay! I am happy I could be of help!")
|
386 |
+
st.session_state.counters["word_count"] = 0
|
387 |
+
st.session_state.counters["letter_count"] = 0
|
388 |
+
new = st.button('Play again', key=63)
|
389 |
+
if new:
|
390 |
+
write_bot("Please describe your word!")
|
391 |
+
guessed = True
|
392 |
+
|
393 |
+
break
|
394 |
+
|
395 |
+
elif b6:
|
396 |
+
write_bot("I am sorry I couldn't help you this time. See you soon!")
|
397 |
+
st.session_state.counters["word_count"] = 0
|
398 |
+
st.session_state.counters["letter_count"] = 0
|
399 |
+
st.session_state.actions.append('cue')
|
400 |
+
|
401 |
+
if new:
|
402 |
+
write_bot("Please describe your word!")
|
403 |
+
st.session_state.counters["word_count"] = 0
|
404 |
+
st.session_state.counters["letter_count"] = 0
|
405 |
+
|
406 |
+
break
|
407 |
+
|
pages/2_Context-based_chatbot.py
ADDED
@@ -0,0 +1,363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from tqdm import tqdm
|
4 |
+
from transformers import pipeline
|
5 |
+
import numpy as np
|
6 |
+
import time
|
7 |
+
import string
|
8 |
+
|
9 |
+
|
10 |
+
# JS
|
11 |
+
import nltk
|
12 |
+
nltk.download('wordnet')
|
13 |
+
from nltk.corpus import wordnet as wn
|
14 |
+
from nltk.tokenize import word_tokenize
|
15 |
+
|
16 |
+
@st.cache_resource
|
17 |
+
def get_models(llama=False):
|
18 |
+
st.write('Loading the model...')
|
19 |
+
model = pipeline("fill-mask")
|
20 |
+
st.write("_The assistant is loaded and ready to use! :tada:_")
|
21 |
+
return model
|
22 |
+
|
23 |
+
model = get_models()
|
24 |
+
|
25 |
+
def remove_punctuation(word):
|
26 |
+
# Create a translation table that maps all punctuation characters to None
|
27 |
+
translator = str.maketrans('', '', string.punctuation)
|
28 |
+
|
29 |
+
# Use the translate method to remove punctuation from the word
|
30 |
+
word_without_punctuation = word.translate(translator)
|
31 |
+
|
32 |
+
return word_without_punctuation
|
33 |
+
|
34 |
+
def return_top_k(sentence, word=None, rels=False):
|
35 |
+
|
36 |
+
if sentence[-1] != ".":
|
37 |
+
sentence = sentence + "."
|
38 |
+
|
39 |
+
# if rels:
|
40 |
+
# inputs = [f"Description : It is related to '{word}' but not '{word}'. Word : "]
|
41 |
+
# else:
|
42 |
+
# inputs = [f"Description : {sentence} Word : "]
|
43 |
+
|
44 |
+
output = model(sentence)
|
45 |
+
output = [output[i]['token_str'] for i in output.keys()]
|
46 |
+
return output
|
47 |
+
|
48 |
+
|
49 |
+
# JS
|
50 |
+
# def get_related_words(word, num=5):
|
51 |
+
# model.eval()
|
52 |
+
# with torch.no_grad():
|
53 |
+
# sentence = [f"Descripton : It is related to {word} but not {word}. Word : "]
|
54 |
+
# #inputs = ["Description: It is something to cut stuff with. Word: "]
|
55 |
+
# print(sentence)
|
56 |
+
# inputs = tokenizer(sentence, padding=True, truncation=True, return_tensors="pt",)
|
57 |
+
|
58 |
+
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
59 |
+
# model.to(device)
|
60 |
+
|
61 |
+
# batch = {k: v.to(device) for k, v in inputs.items()}
|
62 |
+
# beam_outputs = model.generate(
|
63 |
+
# input_ids=batch['input_ids'], max_new_tokens=10, num_beams=num+2, num_return_sequences=num+2, early_stopping=True
|
64 |
+
# )
|
65 |
+
|
66 |
+
# #beam_preds = [tokenizer.decode(beam_output.detach().cpu().numpy(), skip_special_tokens=True) for beam_output in beam_outputs if ]
|
67 |
+
# beam_preds = []
|
68 |
+
# for beam_output in beam_outputs:
|
69 |
+
# prediction = tokenizer.decode(beam_output.detach().cpu().numpy(), skip_special_tokens=True).strip()
|
70 |
+
# if prediction not in " ".join(sentence):
|
71 |
+
# beam_preds.append(prediction)
|
72 |
+
|
73 |
+
# return ", ".join(beam_preds[:num])
|
74 |
+
|
75 |
+
#if 'messages' not in st.session_state:
|
76 |
+
|
77 |
+
def get_text():
|
78 |
+
input_text = st.chat_input()
|
79 |
+
return input_text
|
80 |
+
|
81 |
+
def write_bot(input, remember=True, blink=True):
|
82 |
+
with st.chat_message('assistant'):
|
83 |
+
message_placeholder = st.empty()
|
84 |
+
full_response = input
|
85 |
+
if blink == True:
|
86 |
+
response = ''
|
87 |
+
for chunk in full_response.split():
|
88 |
+
response += chunk + " "
|
89 |
+
time.sleep(0.05)
|
90 |
+
# Add a blinking cursor to simulate typing
|
91 |
+
message_placeholder.markdown(response + "β")
|
92 |
+
time.sleep(0.5)
|
93 |
+
message_placeholder.markdown(full_response)
|
94 |
+
if remember == True:
|
95 |
+
st.session_state.messages.append({'role': 'assistant', 'content': full_response})
|
96 |
+
|
97 |
+
def ask_if_helped():
|
98 |
+
y = st.button('Yes!', key=60)
|
99 |
+
n = st.button('No...', key=61)
|
100 |
+
new = st.button('I have a new word', key=62)
|
101 |
+
if y:
|
102 |
+
write_bot("I am happy to help!")
|
103 |
+
again = st.button('Play again')
|
104 |
+
if again:
|
105 |
+
write_bot("Please describe your word!")
|
106 |
+
st.session_state.is_helpful['ask'] = False
|
107 |
+
elif n:
|
108 |
+
st.session_state.actions.append('cue')
|
109 |
+
st.session_state.is_helpful['ask'] = False
|
110 |
+
#cue_generation()
|
111 |
+
elif new:
|
112 |
+
write_bot("Please describe your word!")
|
113 |
+
st.session_state.is_helpful['ask'] = False
|
114 |
+
|
115 |
+
## removed: if st.session_state.actions[-1] == "result":
|
116 |
+
|
117 |
+
# JS
|
118 |
+
# def get_related_words_llama(relation, target, device, num=5):
|
119 |
+
# prompt = f"Provide {num} {relation}s for the word '{target}'. Your answer consists of these {num} words only. Do not include the word '{target}' itself in your answer"
|
120 |
+
|
121 |
+
# inputs = tokenizer([prompt], return_tensors='pt').to(device)
|
122 |
+
# output = model.generate(
|
123 |
+
# **inputs, max_new_tokens=40, temperature=.75, early_stopping=True,
|
124 |
+
# )
|
125 |
+
# chatbot_response = tokenizer.decode(output[:, inputs['input_ids'].shape[-1]:][0], skip_special_tokens=True).strip()
|
126 |
+
|
127 |
+
# postproc = [word for word in word_tokenize(chatbot_response) if len(word)>=3]
|
128 |
+
|
129 |
+
# return postproc[-num:] if len(postproc)>=num else postproc
|
130 |
+
|
131 |
+
|
132 |
+
def postproc_wn(related_words, syns=False):
|
133 |
+
if syns:
|
134 |
+
related_words = [word.split('.')[0] if word[0] != "." else word.split('.')[1] for word in related_words]
|
135 |
+
else:
|
136 |
+
related_words = [word.name().split('.')[0] if word.name()[0] != "." else word.name().split('.')[1] for word in related_words]
|
137 |
+
related_words = [word.replace("_", " ") for word in related_words]
|
138 |
+
|
139 |
+
return related_words
|
140 |
+
|
141 |
+
# JS
|
142 |
+
def get_available_cues(target):
|
143 |
+
wn_nouns = [word.name() for word in wn.all_synsets(pos='n')]
|
144 |
+
wn_nouns = [word.split('.')[0] if word[0] != "." else word.split('.')[1] for word in wn_nouns]
|
145 |
+
|
146 |
+
if target in wn_nouns:
|
147 |
+
available_cues = {}
|
148 |
+
synset_target = wn.synsets(target, pos=wn.NOUN)[0]
|
149 |
+
|
150 |
+
#if wn.synonyms(target)[0]:
|
151 |
+
# available_cues['Synonyms'] = postproc_wn(wn.synonyms(target)[0], syns=True)
|
152 |
+
|
153 |
+
#if synset_target.hypernyms():
|
154 |
+
# available_cues['Hypernyms'] = postproc_wn(synset_target.hypernyms())
|
155 |
+
|
156 |
+
|
157 |
+
#if synset_target.hyponyms():
|
158 |
+
# available_cues['Hyponyms'] = postproc_wn(synset_target.hyponyms())
|
159 |
+
|
160 |
+
if synset_target.examples():
|
161 |
+
examples = []
|
162 |
+
|
163 |
+
for example in synset_target.examples():
|
164 |
+
examples.append(example.replace(target, "..."))
|
165 |
+
|
166 |
+
available_cues['Examples'] = examples
|
167 |
+
|
168 |
+
return available_cues
|
169 |
+
|
170 |
+
else:
|
171 |
+
return None
|
172 |
+
|
173 |
+
# JS: moved the cue generation further down
|
174 |
+
#def cue_generation():
|
175 |
+
# if st.session_state.actions[-1] == 'cue':
|
176 |
+
|
177 |
+
if 'messages' not in st.session_state:
|
178 |
+
st.session_state.messages = []
|
179 |
+
|
180 |
+
if 'results' not in st.session_state:
|
181 |
+
st.session_state.results = {'results': False, 'results_print': False}
|
182 |
+
|
183 |
+
if 'actions' not in st.session_state:
|
184 |
+
st.session_state.actions = [""]
|
185 |
+
|
186 |
+
if 'counters' not in st.session_state:
|
187 |
+
st.session_state.counters = {"letter_count": 0, "word_count": 0}
|
188 |
+
|
189 |
+
if 'is_helpful' not in st.session_state:
|
190 |
+
st.session_state.is_helpful = {'ask':False}
|
191 |
+
|
192 |
+
if 'descriptions' not in st.session_state:
|
193 |
+
st.session_state.descriptions = []
|
194 |
+
|
195 |
+
st.title("You name it! π£")
|
196 |
+
|
197 |
+
# JS: would remove Simon by some neutral avatar
|
198 |
+
with st.chat_message('user'):
|
199 |
+
st.write("Hey assistant!")
|
200 |
+
|
201 |
+
bot = st.chat_message('assistant')
|
202 |
+
bot.write("Hello human! Wanna practice naming some words?")
|
203 |
+
|
204 |
+
#for showing history of messages
|
205 |
+
for message in st.session_state.messages:
|
206 |
+
if message['role'] == 'user':
|
207 |
+
with st.chat_message(message['role']):
|
208 |
+
st.markdown(message['content'])
|
209 |
+
else:
|
210 |
+
with st.chat_message(message['role']):
|
211 |
+
st.markdown(message['content'])
|
212 |
+
|
213 |
+
#display user message in chat message container
|
214 |
+
prompt = get_text()
|
215 |
+
if prompt:
|
216 |
+
#JS: would replace Simon by some neutral character
|
217 |
+
with st.chat_message('user'):
|
218 |
+
st.markdown(prompt)
|
219 |
+
#add to history
|
220 |
+
st.session_state.messages.append({'role': 'user', 'content': prompt})
|
221 |
+
#TODO: replace it with zero-shot classifier
|
222 |
+
yes = ['yes', 'again', 'Yes', 'sure', 'new word', 'yes!', 'yep', 'yeah']
|
223 |
+
if prompt in yes:
|
224 |
+
write_bot("Please give a sentence using a <mask> instead of the word you have in mind!")
|
225 |
+
elif prompt == 'it is similar to the best place on earth':
|
226 |
+
write_bot("Great! Let me think what it could be...")
|
227 |
+
time.sleep(3)
|
228 |
+
write_bot("Do you mean Saarland?")
|
229 |
+
#if previously we asked to give a prompt
|
230 |
+
elif (st.session_state.messages[-2]['content'] == "Please give a sentence using a <mask> instead of the word you have in mind!") & (st.session_state.messages[-1]['content'] != "no"):
|
231 |
+
write_bot("Great! Let me think what it could be...")
|
232 |
+
st.session_state.descriptions.append(prompt)
|
233 |
+
st.session_state.results['results'] = return_top_k(st.session_state.descriptions[-1])
|
234 |
+
st.session_state.results['results_print'] = dict(zip(range(1, 11), st.session_state.results['results']))
|
235 |
+
write_bot("I think I have some ideas. Do you want to see my guesses or do you want a cue?")
|
236 |
+
st.session_state.actions.append("result")
|
237 |
+
|
238 |
+
if st.session_state.actions[-1] == "result":
|
239 |
+
col1, col2, col3, col4, col5 = st.columns(5)
|
240 |
+
with col1:
|
241 |
+
a1 = st.button('Results', key=10)
|
242 |
+
with col2:
|
243 |
+
a2 = st.button('Cue', key=11)
|
244 |
+
if a1:
|
245 |
+
write_bot("Here are my guesses about your word:")
|
246 |
+
st.write(st.session_state.results['results_print'])
|
247 |
+
time.sleep(1)
|
248 |
+
write_bot('Does it help you remember the word?', remember=False)
|
249 |
+
st.session_state.is_helpful['ask'] = True
|
250 |
+
elif a2:
|
251 |
+
#write_bot(f'The first letter is {st.session_state.results["results"][0][0]}.')
|
252 |
+
#time.sleep(1)
|
253 |
+
st.session_state.actions.append('cue')
|
254 |
+
#cue_generation()
|
255 |
+
#write_bot('Does it help you remember the word?', remember=False)
|
256 |
+
#st.session_state.is_helpful['ask'] = True
|
257 |
+
|
258 |
+
if st.session_state.is_helpful['ask']:
|
259 |
+
ask_if_helped()
|
260 |
+
|
261 |
+
if st.session_state.actions[-1] == 'cue':
|
262 |
+
guessed = False
|
263 |
+
write_bot('What do you want to see?', remember=False, blink=False)
|
264 |
+
|
265 |
+
while guessed == False:
|
266 |
+
# JS
|
267 |
+
word_count = st.session_state.counters["word_count"]
|
268 |
+
target = st.session_state.results["results"][word_count]
|
269 |
+
|
270 |
+
col1, col2, col3, col4, col5 = st.columns(5)
|
271 |
+
|
272 |
+
|
273 |
+
with col1:
|
274 |
+
b1 = st.button("Next letter", key="1")
|
275 |
+
with col2:
|
276 |
+
b2 = st.button("Related words")
|
277 |
+
with col3:
|
278 |
+
b3 = st.button("Next word", key="2")
|
279 |
+
with col4:
|
280 |
+
b4 = st.button("All words", key="3")
|
281 |
+
|
282 |
+
# JS
|
283 |
+
#if get_available_cues(target):
|
284 |
+
# avail_cues = get_available_cues(target)
|
285 |
+
#cues_buttons = {cue_type: st.button(cue_type) for cue_type in avail_cues}
|
286 |
+
|
287 |
+
b5 = st.button("I remembered the word!", key="4", type='primary')
|
288 |
+
b6 = st.button("Exit", key="5", type='primary')
|
289 |
+
new = st.button('Play again', key=64, type='primary')
|
290 |
+
|
291 |
+
if b1:
|
292 |
+
st.session_state.counters["letter_count"] += 1
|
293 |
+
#word_count = st.session_state.counters["word_count"]
|
294 |
+
letter_count = st.session_state.counters["letter_count"]
|
295 |
+
if letter_count < len(target):
|
296 |
+
write_bot(f'The word starts with {st.session_state.results["results"][word_count][:letter_count]}. \n Does this help you remember the word?', remember=False)
|
297 |
+
#ask_if_helped()
|
298 |
+
st.session_state.is_helpful['ask'] = True
|
299 |
+
else:
|
300 |
+
write_bot(f'This is my predicted word: "{target}". Does this match your query?')
|
301 |
+
#ask_if_helped()
|
302 |
+
st.session_state.is_helpful['ask'] = True
|
303 |
+
|
304 |
+
elif b2:
|
305 |
+
rels = return_top_k(st.session_state.descriptions[-1], word=target, rels=True)
|
306 |
+
write_bot(f'Here are words that are related to your word: {", ".join(rels)}. \n Does this help you remember the word?', remember=False)
|
307 |
+
#ask_if_helped()
|
308 |
+
st.session_state.is_helpful['ask'] = True
|
309 |
+
|
310 |
+
elif b3:
|
311 |
+
st.session_state.counters["letter_count"] = 1
|
312 |
+
letter_count = st.session_state.counters["letter_count"]
|
313 |
+
st.session_state.counters["word_count"] += 1
|
314 |
+
word_count = st.session_state.counters["word_count"]
|
315 |
+
#write_bot(f'The next word starts with {st.session_state.results["results"][word_count][:letter_count]}', remember=False)
|
316 |
+
if letter_count < len(target):
|
317 |
+
write_bot(f'The next word starts with {st.session_state.results["results"][word_count][:letter_count]}. \n Does this help you remember the word?', remember=False)
|
318 |
+
#ask_if_helped()
|
319 |
+
st.session_state.is_helpful['ask'] = True
|
320 |
+
else:
|
321 |
+
write_bot(f'This is my predicted word: "{target}". Does this match your query?')
|
322 |
+
#ask_if_helped()
|
323 |
+
st.session_state.is_helpful['ask'] = True
|
324 |
+
|
325 |
+
#elif get_available_cues(target) and "Synonyms" in cues_buttons and cues_buttons['Synonyms']:
|
326 |
+
#write_bot(f'Here are synonyms for the current word: {", ".join(avail_cues["Synonyms"])}', remember=False)
|
327 |
+
|
328 |
+
#elif get_available_cues(target) and "Hypernyms" in cues_buttons and cues_buttons['Hypernyms']:
|
329 |
+
#write_bot(f'Here are hypernyms for the current word: {", ".join(avail_cues["Hypernyms"])}', remember=False)
|
330 |
+
|
331 |
+
#elif get_available_cues(target) and "Hyponyms" in cues_buttons and cues_buttons['Hyponyms']:
|
332 |
+
#write_bot(f'Here are hyponyms for the current word: {", ".join(avail_cues["Hyponyms"])}', remember=False)
|
333 |
+
|
334 |
+
#elif get_available_cues(target) and "Examples" in cues_buttons and cues_buttons['Examples']:
|
335 |
+
#write_bot(f'Here are example contexts for the current word: {", ".join(avail_cues["Examples"])}', remember=False)
|
336 |
+
|
337 |
+
elif b4:
|
338 |
+
write_bot(f"Here are all my guesses about your word: {st.session_state.results['results_print']}")
|
339 |
+
|
340 |
+
elif b5:
|
341 |
+
write_bot("Yay! I am happy I could be of help!")
|
342 |
+
st.session_state.counters["word_count"] = 0
|
343 |
+
st.session_state.counters["letter_count"] = 0
|
344 |
+
new = st.button('Play again', key=63)
|
345 |
+
if new:
|
346 |
+
write_bot("Please describe your word!")
|
347 |
+
guessed = True
|
348 |
+
|
349 |
+
break
|
350 |
+
|
351 |
+
elif b6:
|
352 |
+
write_bot("I am sorry I couldn't help you this time. See you soon!")
|
353 |
+
st.session_state.counters["word_count"] = 0
|
354 |
+
st.session_state.counters["letter_count"] = 0
|
355 |
+
st.session_state.actions.append('cue')
|
356 |
+
|
357 |
+
if new:
|
358 |
+
write_bot("Please describe your word!")
|
359 |
+
st.session_state.counters["word_count"] = 0
|
360 |
+
st.session_state.counters["letter_count"] = 0
|
361 |
+
|
362 |
+
break
|
363 |
+
|
pages/App.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
st.set_page_config(
|
4 |
+
page_title="You Name It!",
|
5 |
+
page_icon="π",
|
6 |
+
)
|
7 |
+
|
8 |
+
st.write("# Welcome to YouNameIt chatbot! π")
|
9 |
+
|
10 |
+
st.sidebar.success("Select a chatbot mode above.")
|
11 |
+
|
12 |
+
st.markdown(
|
13 |
+
"""
|
14 |
+
YouNameIt is a project helping people with aphasia practice their word retrieval skill and assisting them to remember words on a daily basis.
|
15 |
+
**π Select a chatbot mode from the sidebar** to test our app!
|
16 |
+
### What new features are planned?
|
17 |
+
- Adaptation to German language and more;
|
18 |
+
- Speech-to-text suppport;
|
19 |
+
- Android & IOS mobile apps.
|
20 |
+
### For any suggestions or ideas please contact us.
|
21 |
+
- Julian []()
|
22 |
+
- Nursulu []()
|
23 |
+
"""
|
24 |
+
)
|
25 |
+
|