import streamlit as st import torch from tqdm import tqdm from transformers import pipeline import numpy as np import time import string # JS import nltk nltk.download('wordnet') from nltk.corpus import wordnet as wn from nltk.tokenize import word_tokenize @st.cache_resource def get_models_context(llama=False): st.write('Loading the model...') model = pipeline("fill-mask") st.write("_The assistant is loaded and ready to use! :tada:_") return model model_context = get_models_context() def remove_punctuation(word): # Create a translation table that maps all punctuation characters to None translator = str.maketrans('', '', string.punctuation) # Use the translate method to remove punctuation from the word word_without_punctuation = word.translate(translator) return word_without_punctuation def return_top_k_context(sentence, word=None, rels=False): if sentence[-1] != ".": sentence = sentence + "." # if rels: # inputs = [f"Description : It is related to '{word}' but not '{word}'. Word : "] # else: # inputs = [f"Description : {sentence} Word : "] output = model_context(sentence) output = [output[i]['token_str'].strip() for i in range(len(output))] return output # JS # def get_related_words(word, num=5): # model.eval() # with torch.no_grad(): # sentence = [f"Descripton : It is related to {word} but not {word}. Word : "] # #inputs = ["Description: It is something to cut stuff with. Word: "] # print(sentence) # inputs = tokenizer(sentence, padding=True, truncation=True, return_tensors="pt",) # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # model.to(device) # batch = {k: v.to(device) for k, v in inputs.items()} # beam_outputs = model.generate( # input_ids=batch['input_ids'], max_new_tokens=10, num_beams=num+2, num_return_sequences=num+2, early_stopping=True # ) # #beam_preds = [tokenizer.decode(beam_output.detach().cpu().numpy(), skip_special_tokens=True) for beam_output in beam_outputs if ] # beam_preds = [] # for beam_output in beam_outputs: # prediction = tokenizer.decode(beam_output.detach().cpu().numpy(), skip_special_tokens=True).strip() # if prediction not in " ".join(sentence): # beam_preds.append(prediction) # return ", ".join(beam_preds[:num]) #if 'messages_context' not in st.session_state: def get_text(): input_text = st.chat_input() return input_text def write_bot(input, remember=True, blink=True): with st.chat_message('assistant'): message_placeholder = st.empty() full_response = input if blink == True: response = '' for chunk in full_response.split(): response += chunk + " " time.sleep(0.05) # Add a blinking cursor to simulate typing message_placeholder.markdown(response + "▌") time.sleep(0.5) message_placeholder.markdown(full_response) if remember == True: st.session_state.messages_context.append({'role': 'assistant', 'content': full_response}) def ask_if_helped_context(): y = st.button('Yes!', key=60) n = st.button('No...', key=61) new = st.button('I have a new word', key=62) if y: write_bot("I am happy to help!") again = st.button('Play again') if again: write_bot("Please give a sentence using a instead of the word you have in mind!") st.session_state.is_helpful_context['ask'] = False elif n: st.session_state.actions_context.append('cue') st.session_state.is_helpful_context['ask'] = False #cue_generation() elif new: write_bot("Please give a sentence using a instead of the word you have in mind!") st.session_state.is_helpful_context['ask'] = False ## removed: if st.session_state.actions_context[-1] == "result": # JS # def get_related_words_llama(relation, target, device, num=5): # prompt_context = f"Provide {num} {relation}s for the word '{target}'. Your answer consists of these {num} words only. Do not include the word '{target}' itself in your answer" # inputs = tokenizer([prompt_context], return_tensors='pt').to(device) # output = model.generate( # **inputs, max_new_tokens=40, temperature=.75, early_stopping=True, # ) # chatbot_response = tokenizer.decode(output[:, inputs['input_ids'].shape[-1]:][0], skip_special_tokens=True).strip() # postproc = [word for word in word_tokenize(chatbot_response) if len(word)>=3] # return postproc[-num:] if len(postproc)>=num else postproc def postproc_wn(related_words, syns=False): if syns: related_words = [word.split('.')[0] if word[0] != "." else word.split('.')[1] for word in related_words] else: related_words = [word.name().split('.')[0] if word.name()[0] != "." else word.name().split('.')[1] for word in related_words] related_words = [word.replace("_", " ") for word in related_words] return related_words # JS def get_available_cues(target): wn_nouns = [word.name() for word in wn.all_synsets(pos='n')] wn_nouns = [word.split('.')[0] if word[0] != "." else word.split('.')[1] for word in wn_nouns] if target in wn_nouns: available_cues = {} synset_target = wn.synsets(target, pos=wn.NOUN)[0] #if wn.synonyms(target)[0]: # available_cues['Synonyms'] = postproc_wn(wn.synonyms(target)[0], syns=True) #if synset_target.hypernyms(): # available_cues['Hypernyms'] = postproc_wn(synset_target.hypernyms()) #if synset_target.hyponyms(): # available_cues['Hyponyms'] = postproc_wn(synset_target.hyponyms()) if synset_target.examples(): examples = [] for example in synset_target.examples(): examples.append(example.replace(target, "...")) available_cues['Examples'] = examples return available_cues else: return None # JS: moved the cue generation further down #def cue_generation(): # if st.session_state.actions_context[-1] == 'cue': if 'messages_context' not in st.session_state: st.session_state.messages_context = [] if 'results_context' not in st.session_state: st.session_state.results_context = {'results_context': False, 'results_context_print': False} if 'actions_context' not in st.session_state: st.session_state.actions_context = [""] if 'counter_context' not in st.session_state: st.session_state.counter_context = {"letter_count": 0, "word_count": 0} if 'is_helpful_context' not in st.session_state: st.session_state.is_helpful_context = {'ask':False} if 'descriptions_context' not in st.session_state: st.session_state.descriptions_context = [] st.title("You name it! 🗣") # JS: would remove Simon by some neutral avatar with st.chat_message('user'): st.write("Hey assistant!") bot = st.chat_message('assistant') bot.write("Hello human! Wanna practice naming some words?") #for showing history of messages_context for message in st.session_state.messages_context: if message['role'] == 'user': with st.chat_message(message['role']): st.markdown(message['content']) else: with st.chat_message(message['role']): st.markdown(message['content']) #display user message in chat message container prompt_context = get_text() if prompt_context: #JS: would replace Simon by some neutral character with st.chat_message('user'): st.markdown(prompt_context) #add to history st.session_state.messages_context.append({'role': 'user', 'content': prompt_context}) #TODO: replace it with zero-shot classifier yes = ['yes', 'again', 'Yes', 'sure', 'new word', 'yes!', 'yep', 'yeah'] if prompt_context in yes: write_bot("Please give a sentence using a instead of the word you have in mind!") elif prompt_context == 'it is similar to the best place on earth': write_bot("Great! Let me think what it could be...") time.sleep(3) write_bot("Do you mean Saarland?") #if previously we asked to give a prompt_context elif (st.session_state.messages_context[-2]['content'] == "Please give a sentence using a instead of the word you have in mind!") & (st.session_state.messages_context[-1]['content'] != "no"): write_bot("Great! Let me think what it could be...") st.session_state.descriptions_context.append(prompt_context) st.session_state.results_context['results_context'] = return_top_k_context(st.session_state.descriptions_context[-1]) st.session_state.results_context['results_context_print'] = dict(zip(range(1, len(st.session_state.results_context['results_context'])+1), st.session_state.results_context['results_context'])) write_bot("I think I have some ideas. Do you want to see my guesses or do you want a cue?") st.session_state.actions_context.append("result") if st.session_state.actions_context[-1] == "result": col1, col2, col3, col4, col5 = st.columns(5) with col1: a1 = st.button('Results', key=10) with col2: a2 = st.button('Cue', key=11) if a1: write_bot("Here are my guesses about your word:") st.write(st.session_state.results_context['results_context_print']) time.sleep(1) write_bot('Does it help you remember the word?', remember=False) st.session_state.is_helpful_context['ask'] = True elif a2: write_bot(f'The first letter is {st.session_state.results_context["results_context"][0][0]}.') time.sleep(1) # st.session_state.actions_context.append('cue') #cue_generation() write_bot('Does it help you remember the word?', remember=False) st.session_state.is_helpful_context['ask'] = True if st.session_state.is_helpful_context['ask'] == True: ask_if_helped_context() if st.session_state.actions_context[-1] == 'cue': guessed = False write_bot('What do you want to see?', remember=False, blink=False) col1, col2, col3, col4, col5 = st.columns(5) with col1: b1 = st.button("Next letter", key="1") with col2: b2 = st.button("Related words") with col3: b3 = st.button("Next word", key="2") with col4: b4 = st.button("All words", key="3") # JS #if get_available_cues(target): # avail_cues = get_available_cues(target) #cues_buttons = {cue_type: st.button(cue_type) for cue_type in avail_cues} b5 = st.button("I remembered the word!", key="4", type='primary') b6 = st.button("Exit", key="5", type='primary') new = st.button('Play again', key=64, type='primary') while guessed == False: # JS word_count = st.session_state.counter_context["word_count"] target = st.session_state.results_context["results_context"][word_count] if b1: st.session_state.counter_context["letter_count"] += 1 #word_count = st.session_state.counter_context["word_count"] letter_count = st.session_state.counter_context["letter_count"] if letter_count < len(target): write_bot(f'The word starts with {st.session_state.results_context["results_context"][word_count][:letter_count]}. \n Does this help you remember the word?', remember=False) #ask_if_helped_context() st.session_state.is_helpful_context['ask'] = True else: write_bot(f'This is my predicted word: "{target}". Does this match your query?') #ask_if_helped_context() st.session_state.is_helpful_context['ask'] = True elif b2: rels = return_top_k_context(st.session_state.descriptions_context[-1], word=target, rels=True) write_bot(f'Here are words that are related to your word: {", ".join(rels)}. \n Does this help you remember the word?', remember=False) #ask_if_helped_context() st.session_state.is_helpful_context['ask'] = True elif b3: st.session_state.counter_context["letter_count"] = 1 letter_count = st.session_state.counter_context["letter_count"] st.session_state.counter_context["word_count"] += 1 word_count = st.session_state.counter_context["word_count"] #write_bot(f'The next word starts with {st.session_state.results_context["results_context"][word_count][:letter_count]}', remember=False) if letter_count < len(target): write_bot(f'The next word starts with {st.session_state.results_context["results_context"][word_count][:letter_count]}. \n Does this help you remember the word?', remember=False) #ask_if_helped_context() st.session_state.is_helpful_context['ask'] = True else: write_bot(f'This is my predicted word: "{target}". Does this match your query?') #ask_if_helped_context() st.session_state.is_helpful_context['ask'] = True #elif get_available_cues(target) and "Synonyms" in cues_buttons and cues_buttons['Synonyms']: #write_bot(f'Here are synonyms for the current word: {", ".join(avail_cues["Synonyms"])}', remember=False) #elif get_available_cues(target) and "Hypernyms" in cues_buttons and cues_buttons['Hypernyms']: #write_bot(f'Here are hypernyms for the current word: {", ".join(avail_cues["Hypernyms"])}', remember=False) #elif get_available_cues(target) and "Hyponyms" in cues_buttons and cues_buttons['Hyponyms']: #write_bot(f'Here are hyponyms for the current word: {", ".join(avail_cues["Hyponyms"])}', remember=False) #elif get_available_cues(target) and "Examples" in cues_buttons and cues_buttons['Examples']: #write_bot(f'Here are example contexts for the current word: {", ".join(avail_cues["Examples"])}', remember=False) elif b4: write_bot(f"Here are all my guesses about your word: {st.session_state.results_context['results_context_print']}") st.session_state.is_helpful_context['ask'] = True elif b5: write_bot("Yay! I am happy I could be of help!") st.session_state.counter_context["word_count"] = 0 st.session_state.counter_context["letter_count"] = 0 new = st.button('Play again', key=63) if new: write_bot("Please give a sentence using a instead of the word you have in mind!") guessed = True break elif b6: write_bot("I am sorry I couldn't help you this time. See you soon!") st.session_state.counter_context["word_count"] = 0 st.session_state.counter_context["letter_count"] = 0 st.session_state.actions_context.append('cue') if new: write_bot("Please give a sentence using a instead of the word you have in mind!") st.session_state.counter_context["word_count"] = 0 st.session_state.counter_context["letter_count"] = 0 break