Spaces:
Runtime error
Runtime error
import torch | |
import re | |
import pandas as pd | |
from PyPDF2 import PdfReader | |
from transformers import AutoTokenizer, pipeline, AutoModelForSeq2SeqLM | |
import gradio as gr | |
import spaces | |
# Load the tokenizer and model | |
led_tokenizer = AutoTokenizer.from_pretrained("allenai/led-base-16384-multi_lexsum-source-long") | |
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", tokenizer="sshleifer/distilbart-cnn-12-6", framework="pt") | |
# Load the model separately | |
model = AutoModelForSeq2SeqLM.from_pretrained("allenai/led-base-16384-multi_lexsum-source-long") | |
# Move the model to CUDA if available | |
if torch.cuda.is_available(): | |
model = model.to("cuda") | |
# Function to clean text by keeping only alphanumeric characters and spaces | |
def clean_text(text): | |
return re.sub(r'[^a-zA-Z0-9\s]', '', text) | |
# Function to extract text from PDF files | |
def extract_text(pdf_file): | |
try: | |
with open(pdf_file, 'rb') as file: | |
pdf_reader = PdfReader(file) | |
if pdf_reader.is_encrypted: | |
print(f"Skipping encrypted file: {pdf_file}") | |
return None | |
return ' '.join(page.extract_text() or '' for page in pdf_reader.pages) | |
except Exception as e: | |
print(f"Error extracting text from {pdf_file}: {e}") | |
return None | |
# Function to classify text using LED model in batches | |
def classify_texts(texts): | |
return [classifier(text)["label"] for text in texts] | |
# Function to summarize text using the summarizer model in batches | |
def summarize_texts(texts): | |
return [summarizer(text, max_length=100, min_length=30, do_sample=False)[0]['summary_text'] for text in texts] | |
# Function to extract a title-like summary from the beginning of the text | |
def extract_title(text): | |
return summarizer(text, max_length=20, min_length=5, do_sample=False)[0]['summary_text'] | |
# Function to process PDF files | |
def process_files(pdf_files): | |
data = [] | |
for pdf_file in pdf_files: | |
text = extract_text(pdf_file) | |
if text is None: | |
continue | |
title_text = text.split(maxsplit=512)[0] | |
title = extract_title(title_text) | |
# Clean the entire text at once | |
cleaned_text = clean_text(text) | |
data.append([title, summarize_texts([cleaned_text])[0], cleaned_text]) | |
df = pd.DataFrame(data, columns=['Title', 'Abstract', 'Content']) | |
output_file_path = 'processed_pdfs.csv' | |
df.to_csv(output_file_path, index=False) | |
return output_file_path | |
# Gradio interface | |
pdf_input = gr.Interface.inputs.File(label="Upload PDF Files", type="file", multiple=True) | |
csv_output = gr.Interface.outputs.File(label="Download CSV") | |
gr.Interface( | |
fn=process_files, | |
inputs=pdf_input, | |
outputs=csv_output, | |
title="Dataset creation", | |
description="Upload PDF files and get a summarized CSV file.", | |
article="""<p>This app creates a dataset from research papers using AI models.</p> | |
<p>It uses models for classification and summarization to extract titles, abstracts, and content from PDFs.</p>""" | |
).launch(share=True) |