Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,17 @@
|
|
1 |
import os
|
2 |
import re
|
3 |
-
import PyPDF2
|
4 |
import pandas as pd
|
|
|
|
|
5 |
from transformers import pipeline, AutoTokenizer
|
6 |
import gradio as gr
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# Function to clean text by keeping only alphanumeric characters and spaces
|
10 |
def clean_text(text):
|
@@ -12,11 +19,18 @@ def clean_text(text):
|
|
12 |
|
13 |
# Function to extract text from PDF files
|
14 |
def extract_text(pdf_file):
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
# Function to split text into chunks of a specified size
|
22 |
def split_text(text, chunk_size=1024):
|
@@ -24,89 +38,80 @@ def split_text(text, chunk_size=1024):
|
|
24 |
for i in range(0, len(words), chunk_size):
|
25 |
yield ' '.join(words[i:i + chunk_size])
|
26 |
|
27 |
-
# Load the LED tokenizer
|
28 |
-
led_tokenizer = AutoTokenizer.from_pretrained("allenai/led-base-16384-multi_lexsum-source-long")
|
29 |
-
|
30 |
# Function to classify text using LED model
|
31 |
-
@spaces.GPU(duration=120)
|
32 |
def classify_text(text):
|
33 |
-
classifier = pipeline("text-classification", model="allenai/led-base-16384-multi_lexsum-source-long", tokenizer=led_tokenizer, framework="pt")
|
34 |
try:
|
35 |
return classifier(text)[0]['label']
|
36 |
except IndexError:
|
37 |
return "Unable to classify"
|
38 |
|
39 |
-
# Function to summarize text using
|
40 |
-
@spaces.GPU(duration=120)
|
41 |
def summarize_text(text, max_length=100, min_length=30):
|
42 |
-
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", tokenizer="sshleifer/distilbart-cnn-12-6", framework="pt")
|
43 |
try:
|
44 |
return summarizer(text, max_length=max_length, min_length=min_length, do_sample=False)[0]['summary_text']
|
45 |
except IndexError:
|
46 |
return "Unable to summarize"
|
47 |
|
48 |
# Function to extract a title-like summary from the beginning of the text
|
49 |
-
@spaces.GPU(duration=120)
|
50 |
def extract_title(text, max_length=20):
|
51 |
-
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", tokenizer="sshleifer/distilbart-cnn-12-6", framework="pt")
|
52 |
try:
|
53 |
return summarizer(text, max_length=max_length, min_length=5, do_sample=False)[0]['summary_text']
|
54 |
except IndexError:
|
55 |
return "Unable to extract title"
|
56 |
|
57 |
-
# Function to process PDF
|
58 |
-
|
59 |
-
|
60 |
-
data = []
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
# Split text into chunks and process each chunk
|
74 |
-
for chunk in split_text(text, chunk_size=512):
|
75 |
-
# Summarize the text chunk
|
76 |
-
abstract = summarize_text(chunk)
|
77 |
-
combined_abstract.append(abstract)
|
78 |
-
|
79 |
-
# Clean the text chunk
|
80 |
-
cleaned_text = clean_text(chunk)
|
81 |
-
combined_cleaned_text.append(cleaned_text)
|
82 |
-
|
83 |
-
# Combine results from all chunks
|
84 |
-
final_abstract = ' '.join(combined_abstract)
|
85 |
-
final_cleaned_text = ' '.join(combined_cleaned_text)
|
86 |
-
|
87 |
-
# Append the data to the list
|
88 |
-
data.append([title, final_abstract, final_cleaned_text])
|
89 |
-
|
90 |
-
# Create a DataFrame from the data list
|
91 |
-
df = pd.DataFrame(data, columns=['Title', 'Abstract', 'Content'])
|
92 |
|
93 |
-
#
|
94 |
-
|
95 |
-
|
|
|
|
|
96 |
|
97 |
-
|
|
|
|
|
98 |
|
99 |
-
#
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
|
|
103 |
gr.Interface(
|
104 |
-
fn=
|
105 |
-
inputs=
|
106 |
-
outputs=
|
107 |
-
title="Dataset
|
108 |
-
description="Upload PDF
|
109 |
-
|
110 |
-
<p>This app uses the allenai/led-base-16384-multi_lexsum-source-long and sshleifer/distilbart-cnn-12-6 AI models.</p>
|
111 |
-
<p>The output file is a CSV with 3 columns: title, abstract, and content.</p>"""
|
112 |
-
).launch()
|
|
|
1 |
import os
|
2 |
import re
|
|
|
3 |
import pandas as pd
|
4 |
+
import PyPDF2
|
5 |
+
from concurrent.futures import ThreadPoolExecutor
|
6 |
from transformers import pipeline, AutoTokenizer
|
7 |
import gradio as gr
|
8 |
+
|
9 |
+
# Load the LED tokenizer and model
|
10 |
+
led_tokenizer = AutoTokenizer.from_pretrained("allenai/led-base-16384-multi_lexsum-source-long")
|
11 |
+
classifier = pipeline("text-classification", model="allenai/led-base-16384-multi_lexsum-source-long", tokenizer=led_tokenizer, framework="pt")
|
12 |
+
|
13 |
+
# Load the summarization model and tokenizer
|
14 |
+
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", tokenizer="sshleifer/distilbart-cnn-12-6", framework="pt")
|
15 |
|
16 |
# Function to clean text by keeping only alphanumeric characters and spaces
|
17 |
def clean_text(text):
|
|
|
19 |
|
20 |
# Function to extract text from PDF files
|
21 |
def extract_text(pdf_file):
|
22 |
+
try:
|
23 |
+
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
24 |
+
if pdf_reader.is_encrypted:
|
25 |
+
print(f"Skipping encrypted file: {pdf_file}")
|
26 |
+
return None
|
27 |
+
text = ''
|
28 |
+
for page in pdf_reader.pages:
|
29 |
+
text += page.extract_text() or ''
|
30 |
+
return text
|
31 |
+
except Exception as e:
|
32 |
+
print(f"Error extracting text from {pdf_file}: {e}")
|
33 |
+
return None
|
34 |
|
35 |
# Function to split text into chunks of a specified size
|
36 |
def split_text(text, chunk_size=1024):
|
|
|
38 |
for i in range(0, len(words), chunk_size):
|
39 |
yield ' '.join(words[i:i + chunk_size])
|
40 |
|
|
|
|
|
|
|
41 |
# Function to classify text using LED model
|
|
|
42 |
def classify_text(text):
|
|
|
43 |
try:
|
44 |
return classifier(text)[0]['label']
|
45 |
except IndexError:
|
46 |
return "Unable to classify"
|
47 |
|
48 |
+
# Function to summarize text using the summarizer model
|
|
|
49 |
def summarize_text(text, max_length=100, min_length=30):
|
|
|
50 |
try:
|
51 |
return summarizer(text, max_length=max_length, min_length=min_length, do_sample=False)[0]['summary_text']
|
52 |
except IndexError:
|
53 |
return "Unable to summarize"
|
54 |
|
55 |
# Function to extract a title-like summary from the beginning of the text
|
|
|
56 |
def extract_title(text, max_length=20):
|
|
|
57 |
try:
|
58 |
return summarizer(text, max_length=max_length, min_length=5, do_sample=False)[0]['summary_text']
|
59 |
except IndexError:
|
60 |
return "Unable to extract title"
|
61 |
|
62 |
+
# Function to process each PDF file and extract relevant information
|
63 |
+
def process_pdf(pdf_file):
|
64 |
+
text = extract_text(pdf_file)
|
|
|
65 |
|
66 |
+
# Skip encrypted files
|
67 |
+
if text is None:
|
68 |
+
return None
|
69 |
+
|
70 |
+
# Extract a title from the beginning of the text
|
71 |
+
title_text = ' '.join(text.split()[:512]) # Take the first 512 tokens for title extraction
|
72 |
+
title = extract_title(title_text)
|
73 |
+
|
74 |
+
# Initialize placeholders for combined results
|
75 |
+
combined_abstract = []
|
76 |
+
combined_cleaned_text = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
# Split text into chunks and process each chunk
|
79 |
+
for chunk in split_text(text, chunk_size=512):
|
80 |
+
# Summarize the text chunk
|
81 |
+
abstract = summarize_text(chunk)
|
82 |
+
combined_abstract.append(abstract)
|
83 |
|
84 |
+
# Clean the text chunk
|
85 |
+
cleaned_text = clean_text(chunk)
|
86 |
+
combined_cleaned_text.append(cleaned_text)
|
87 |
|
88 |
+
# Combine results from all chunks
|
89 |
+
final_abstract = ' '.join(combined_abstract)
|
90 |
+
final_cleaned_text = ' '.join(combined_cleaned_text)
|
91 |
+
|
92 |
+
return [title, final_abstract, final_cleaned_text]
|
93 |
+
|
94 |
+
# Function to handle multiple PDF files in parallel
|
95 |
+
def process_pdfs(files):
|
96 |
+
data = []
|
97 |
+
with ThreadPoolExecutor() as executor:
|
98 |
+
results = list(executor.map(process_pdf, files))
|
99 |
+
data.extend(result for result in results if result is not None)
|
100 |
+
return data
|
101 |
+
|
102 |
+
# Gradio interface function
|
103 |
+
def gradio_interface(files):
|
104 |
+
data = process_pdfs([file.name for file in files])
|
105 |
+
df = pd.DataFrame(data, columns=['Title', 'Abstract', 'Content'])
|
106 |
+
csv_path = "/content/drive/My Drive/path_to_output/output.csv" # Adjust this to your actual path
|
107 |
+
df.to_csv(csv_path, index=False)
|
108 |
+
return csv_path
|
109 |
|
110 |
+
# Gradio app setup
|
111 |
gr.Interface(
|
112 |
+
fn=gradio_interface,
|
113 |
+
inputs=gr.inputs.File(file_count="multiple", file_types=[".pdf"]),
|
114 |
+
outputs="text",
|
115 |
+
title="PDF Research Paper Dataset Creator",
|
116 |
+
description="Upload PDF research papers to create a dataset with title, abstract, and content."
|
117 |
+
).launch()
|
|
|
|
|
|