Spaces:
Runtime error
Runtime error
Delete app.py
Browse files
app.py
DELETED
@@ -1,86 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import re
|
3 |
-
import pandas as pd
|
4 |
-
from gradio import Interface, File
|
5 |
-
import spaces
|
6 |
-
import gradio as gr
|
7 |
-
from PyPDF2 import PdfReader
|
8 |
-
from transformers import AutoTokenizer, pipeline, AutoModelForSeq2SeqLM
|
9 |
-
|
10 |
-
# Load the tokenizer and model
|
11 |
-
led_tokenizer = AutoTokenizer.from_pretrained("allenai/led-base-16384-multi_lexsum-source-long")
|
12 |
-
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", tokenizer="sshleifer/distilbart-cnn-12-6", framework="pt")
|
13 |
-
|
14 |
-
# Load the model separately
|
15 |
-
model = AutoModelForSeq2SeqLM.from_pretrained("allenai/led-base-16384-multi_lexsum-source-long")
|
16 |
-
|
17 |
-
# Move the model to CUDA if available
|
18 |
-
if torch.cuda.is_available():
|
19 |
-
model = model.to("cuda")
|
20 |
-
|
21 |
-
# Function to clean text by keeping only alphanumeric characters and spaces
|
22 |
-
def clean_text(text):
|
23 |
-
return re.sub(r'[^a-zA-Z0-9\s]', '', text)
|
24 |
-
|
25 |
-
# Function to extract text from PDF files
|
26 |
-
def extract_text(pdf_file):
|
27 |
-
try:
|
28 |
-
with open(pdf_file, 'rb') as file:
|
29 |
-
pdf_reader = PdfReader(file)
|
30 |
-
if pdf_reader.is_encrypted:
|
31 |
-
print(f"Skipping encrypted file: {pdf_file}")
|
32 |
-
return None
|
33 |
-
return ' '.join(page.extract_text() or '' for page in pdf_reader.pages)
|
34 |
-
except Exception as e:
|
35 |
-
print(f"Error extracting text from {pdf_file}: {e}")
|
36 |
-
return None
|
37 |
-
|
38 |
-
# Function to classify text using LED model in batches
|
39 |
-
def classify_texts(texts):
|
40 |
-
return [classifier(text)["label"] for text in texts]
|
41 |
-
|
42 |
-
# Function to summarize text using the summarizer model in batches
|
43 |
-
@spaces.GPU
|
44 |
-
def summarize_texts(texts):
|
45 |
-
return [summarizer(text, max_length=100, min_length=30, do_sample=False)[0]['summary_text'] for text in texts]
|
46 |
-
|
47 |
-
# Function to extract a title-like summary from the beginning of the text
|
48 |
-
@spaces.GPU
|
49 |
-
def extract_title(text):
|
50 |
-
return summarizer(text, max_length=20, min_length=5, do_sample=False)[0]['summary_text']
|
51 |
-
|
52 |
-
# Function to process PDF files
|
53 |
-
@spaces.GPU
|
54 |
-
def process_files(pdf_files):
|
55 |
-
data = []
|
56 |
-
for pdf_file in pdf_files:
|
57 |
-
text = extract_text(pdf_file)
|
58 |
-
if text is None:
|
59 |
-
continue
|
60 |
-
|
61 |
-
title_text = text.split(maxsplit=512)[0]
|
62 |
-
title = extract_title(title_text)
|
63 |
-
|
64 |
-
# Clean the entire text at once
|
65 |
-
cleaned_text = clean_text(text)
|
66 |
-
|
67 |
-
data.append([title, summarize_texts([cleaned_text])[0], cleaned_text])
|
68 |
-
|
69 |
-
df = pd.DataFrame(data, columns=['Title', 'Abstract', 'Content'])
|
70 |
-
output_file_path = 'processed_pdfs.csv'
|
71 |
-
df.to_csv(output_file_path, index=False)
|
72 |
-
return output_file_path
|
73 |
-
|
74 |
-
# Gradio interface
|
75 |
-
pdf_input = gr.File(label="Upload PDF Files", file_types=[".pdf"], file_count="multiple")
|
76 |
-
csv_output = gr.File(label="Download CSV")
|
77 |
-
|
78 |
-
gr.Interface(
|
79 |
-
fn=process_files,
|
80 |
-
inputs=pdf_input,
|
81 |
-
outputs=csv_output,
|
82 |
-
title="Dataset creation",
|
83 |
-
description="Upload PDF files and get a summarized CSV file.",
|
84 |
-
article="""<p>This app creates a dataset from research papers using AI models.</p>
|
85 |
-
<p>It uses models for classification and summarization to extract titles, abstracts, and content from PDFs.</p>"""
|
86 |
-
).launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|