Spaces:
Runtime error
Runtime error
import pandas as pd | |
import torch | |
from sentence_transformers import SentenceTransformer, util | |
import gradio as gr | |
import json | |
import spaces | |
# Load the CSV file with embeddings | |
df = pd.read_csv('RBDx10kstats.csv') | |
df['embedding'] = df['embedding'].apply(json.loads) # Convert JSON string back to list | |
# Convert embeddings to tensor for efficient retrieval | |
embeddings = torch.tensor(df['embedding'].tolist()) | |
# Load the same Sentence Transformer model | |
model = SentenceTransformer('all-MiniLM-L6-v2') | |
# Define the function to find the most relevant document | |
def retrieve_relevant_doc(query): | |
query_embedding = model.encode(query, convert_to_tensor=True) | |
similarities = util.pytorch_cos_sim(query_embedding, embeddings)[0] | |
best_match_idx = torch.argmax(similarities).item() | |
return df.iloc[best_match_idx]['Abstract'] | |
# Define the function to generate a response (for simplicity, echo the retrieved doc) | |
def generate_response(query): | |
relevant_doc = retrieve_relevant_doc(query) | |
# Here you could use a more sophisticated language model to generate a response | |
# For now, we will just return the relevant document as the response | |
return relevant_doc | |
# Create a Gradio interface | |
iface = gr.Interface( | |
fn=generate_response, | |
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your query here..."), | |
outputs="text", | |
title="RAG Chatbot", | |
description="This chatbot retrieves relevant documents based on your query." | |
) | |
# Launch the Gradio interface | |
iface.launch() |