testchatbot / app.py
Yoxas's picture
Update app.py
c2371ad verified
raw
history blame
2.08 kB
import pandas as pd
import torch
from sentence_transformers import SentenceTransformer, util
import gradio as gr
import json
from transformers import AutoTokenizer, AutoModelForCausalLM
import spaces
# Ensure you have GPU support
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Load the CSV file with embeddings
df = pd.read_csv('RBDx10kstats.csv')
df['embedding'] = df['embedding'].apply(json.loads) # Convert JSON string back to list
# Convert embeddings to tensor for efficient retrieval
embeddings = torch.tensor(df['embedding'].tolist(), device=device)
# Load the Sentence Transformer model
model = SentenceTransformer('all-MiniLM-L6-v2', device=device)
# Load the ai model for response generation
ai_tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2-large")
ai_model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2-large").to(device)
# Define the function to find the most relevant document
@spaces.GPU(duration=120)
def retrieve_relevant_doc(query):
query_embedding = model.encode(query, convert_to_tensor=True, device=device)
similarities = util.pytorch_cos_sim(query_embedding, embeddings)[0]
best_match_idx = torch.argmax(similarities).item()
return df.iloc[best_match_idx]['Abstract']
# Define the function to generate a response
@spaces.GPU(duration=120)
def generate_response(query):
relevant_doc = retrieve_relevant_doc(query)
input_text = f"Document: {relevant_doc}\n\nQuestion: {query}\n\nAnswer:"
inputs = ai_tokenizer(input_text, return_tensors="pt").to(device)
outputs = ai_model.generate(inputs["input_ids"], max_length=1024)
response = ai_tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Create a Gradio interface
iface = gr.Interface(
fn=generate_response,
inputs=gr.Textbox(lines=2, placeholder="Enter your query here..."),
outputs="text",
title="RAG Chatbot",
description="This chatbot retrieves relevant documents based on your query and generates responses using ai models."
)
# Launch the Gradio interface
iface.launch()