Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -27,7 +27,7 @@ tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
|
|
27 |
model_response = AutoModelForCausalLM.from_pretrained("openai-community/gpt2").to(device)
|
28 |
|
29 |
# Load the NLU model for intent detection
|
30 |
-
nlu_model = AutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased-finetuned-sst-2-english")
|
31 |
|
32 |
# Define the function to find the most relevant document
|
33 |
@spaces.GPU(duration=120)
|
@@ -38,7 +38,6 @@ def retrieve_relevant_doc(query):
|
|
38 |
return df.iloc[best_match_idx]['Abstract']
|
39 |
|
40 |
# Define the function to detect intent
|
41 |
-
@spaces.GPU(duration=120)
|
42 |
def detect_intent(query):
|
43 |
inputs = tokenizer(query, return_tensors="pt").to(device)
|
44 |
outputs = nlu_model(inputs["input_ids"], attention_mask=inputs["attention_mask"])
|
|
|
27 |
model_response = AutoModelForCausalLM.from_pretrained("openai-community/gpt2").to(device)
|
28 |
|
29 |
# Load the NLU model for intent detection
|
30 |
+
nlu_model = AutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased-finetuned-sst-2-english").to(device)
|
31 |
|
32 |
# Define the function to find the most relevant document
|
33 |
@spaces.GPU(duration=120)
|
|
|
38 |
return df.iloc[best_match_idx]['Abstract']
|
39 |
|
40 |
# Define the function to detect intent
|
|
|
41 |
def detect_intent(query):
|
42 |
inputs = tokenizer(query, return_tensors="pt").to(device)
|
43 |
outputs = nlu_model(inputs["input_ids"], attention_mask=inputs["attention_mask"])
|