Yoxas commited on
Commit
235ed18
·
verified ·
1 Parent(s): 6ed1673

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -45
app.py CHANGED
@@ -3,67 +3,38 @@ import pandas as pd
3
  import numpy as np
4
  from transformers import pipeline, BertTokenizer, BertModel
5
  import faiss
6
- import torch
7
- import json
8
- import spaces
9
 
10
  # Load CSV data
11
- data = pd.read_csv('RBDx10kstats.csv')
12
 
13
- # Function to safely convert JSON strings to numpy arrays
14
- def safe_json_loads(x):
15
- try:
16
- return np.array(json.loads(x), dtype=np.float32) # Ensure the array is of type float32
17
- except json.JSONDecodeError as e:
18
- print(f"Error decoding JSON: {e}")
19
- return np.array([], dtype=np.float32) # Return an empty array or handle it as appropriate
20
-
21
- # Apply the safe_json_loads function to the embedding column
22
- data['embedding'] = data['embedding'].apply(safe_json_loads)
23
-
24
- # Filter out any rows with empty embeddings
25
- data = data[data['embedding'].apply(lambda x: x.size > 0)]
26
 
27
  # Initialize FAISS index
28
- dimension = len(data['embedding'].iloc[0])
29
- res = faiss.StandardGpuResources() # use a single GPU
30
-
31
- # Create FAISS index
32
- if faiss.get_num_gpus() > 0:
33
- gpu_index = faiss.IndexFlatL2(dimension)
34
- gpu_index = faiss.index_cpu_to_gpu(res, 0, gpu_index) # move to GPU
35
- else:
36
- gpu_index = faiss.IndexFlatL2(dimension) # fall back to CPU
37
-
38
- # Ensure embeddings are stacked as float32
39
- embeddings = np.vstack(data['embedding'].values).astype(np.float32)
40
- gpu_index.add(embeddings)
41
-
42
- # Check if GPU is available
43
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
44
 
45
  # Load QA model
46
- qa_model = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad", device=0 if torch.cuda.is_available() else -1)
47
-
48
- # Load BERT model and tokenizer
49
- tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
50
- model = BertModel.from_pretrained('bert-base-uncased').to(device)
51
 
52
  # Function to embed the question using BERT
53
  def embed_question(question, model, tokenizer):
54
- inputs = tokenizer(question, return_tensors='pt').to(device)
55
- with torch.no_grad():
56
- outputs = model(**inputs)
57
- return outputs.last_hidden_state.mean(dim=1).cpu().numpy().astype(np.float32)
 
 
 
58
 
59
  # Function to retrieve the relevant document and generate a response
60
- @spaces.GPU(duration=120)
61
  def retrieve_and_generate(question):
62
  # Embed the question
63
  question_embedding = embed_question(question, model, tokenizer)
64
 
65
  # Search in FAISS index
66
- _, indices = gpu_index.search(question_embedding, k=1)
67
 
68
  # Retrieve the most relevant document
69
  relevant_doc = data.iloc[indices[0][0]]
@@ -77,7 +48,7 @@ def retrieve_and_generate(question):
77
  # Create a Gradio interface
78
  interface = gr.Interface(
79
  fn=retrieve_and_generate,
80
- inputs=gr.Textbox(lines=2, placeholder="Ask a question about the documents..."),
81
  outputs="text",
82
  title="RAG Chatbot",
83
  description="Ask questions about the documents in the CSV file."
 
3
  import numpy as np
4
  from transformers import pipeline, BertTokenizer, BertModel
5
  import faiss
 
 
 
6
 
7
  # Load CSV data
8
+ data = pd.read_csv('RBDx10stats.csv')
9
 
10
+ # Convert embedding column from string to numpy array
11
+ data['Embedding'] = data['Embedding'].apply(lambda x: np.fromstring(x[1:-1], sep=', '))
 
 
 
 
 
 
 
 
 
 
 
12
 
13
  # Initialize FAISS index
14
+ dimension = len(data['Embedding'][0])
15
+ index = faiss.IndexFlatL2(dimension)
16
+ index.add(np.stack(data['Embedding'].values))
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
  # Load QA model
19
+ qa_model = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
 
 
 
 
20
 
21
  # Function to embed the question using BERT
22
  def embed_question(question, model, tokenizer):
23
+ inputs = tokenizer(question, return_tensors='pt')
24
+ outputs = model(**inputs)
25
+ return outputs.last_hidden_state.mean(dim=1).detach().numpy()
26
+
27
+ # Load BERT model and tokenizer
28
+ tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
29
+ model = BertModel.from_pretrained('bert-base-uncased')
30
 
31
  # Function to retrieve the relevant document and generate a response
 
32
  def retrieve_and_generate(question):
33
  # Embed the question
34
  question_embedding = embed_question(question, model, tokenizer)
35
 
36
  # Search in FAISS index
37
+ _, indices = index.search(question_embedding, k=1)
38
 
39
  # Retrieve the most relevant document
40
  relevant_doc = data.iloc[indices[0][0]]
 
48
  # Create a Gradio interface
49
  interface = gr.Interface(
50
  fn=retrieve_and_generate,
51
+ inputs=gr.inputs.Textbox(lines=2, placeholder="Ask a question about the documents..."),
52
  outputs="text",
53
  title="RAG Chatbot",
54
  description="Ask questions about the documents in the CSV file."