Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ from sentence_transformers import SentenceTransformer, util
|
|
4 |
import gradio as gr
|
5 |
import json
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
-
|
8 |
# Ensure you have GPU support
|
9 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
10 |
|
@@ -23,6 +23,7 @@ llama_tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
|
|
23 |
llama_model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2").to(device)
|
24 |
|
25 |
# Define the function to find the most relevant document
|
|
|
26 |
def retrieve_relevant_doc(query):
|
27 |
query_embedding = model.encode(query, convert_to_tensor=True, device=device)
|
28 |
similarities = util.pytorch_cos_sim(query_embedding, embeddings)[0]
|
@@ -30,6 +31,7 @@ def retrieve_relevant_doc(query):
|
|
30 |
return df.iloc[best_match_idx]['Abstract']
|
31 |
|
32 |
# Define the function to generate a response
|
|
|
33 |
def generate_response(query):
|
34 |
relevant_doc = retrieve_relevant_doc(query)
|
35 |
input_text = f"Document: {relevant_doc}\n\nQuestion: {query}\n\nAnswer:"
|
|
|
4 |
import gradio as gr
|
5 |
import json
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
+
import spaces
|
8 |
# Ensure you have GPU support
|
9 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
10 |
|
|
|
23 |
llama_model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2").to(device)
|
24 |
|
25 |
# Define the function to find the most relevant document
|
26 |
+
@spaces.GPU(duration=120)
|
27 |
def retrieve_relevant_doc(query):
|
28 |
query_embedding = model.encode(query, convert_to_tensor=True, device=device)
|
29 |
similarities = util.pytorch_cos_sim(query_embedding, embeddings)[0]
|
|
|
31 |
return df.iloc[best_match_idx]['Abstract']
|
32 |
|
33 |
# Define the function to generate a response
|
34 |
+
@spaces.GPU(duration=120)
|
35 |
def generate_response(query):
|
36 |
relevant_doc = retrieve_relevant_doc(query)
|
37 |
input_text = f"Document: {relevant_doc}\n\nQuestion: {query}\n\nAnswer:"
|