Yoxas commited on
Commit
2ef3675
·
verified ·
1 Parent(s): e0b330b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -1
app.py CHANGED
@@ -4,7 +4,7 @@ from sentence_transformers import SentenceTransformer, util
4
  import gradio as gr
5
  import json
6
  from transformers import AutoTokenizer, AutoModelForCausalLM
7
-
8
  # Ensure you have GPU support
9
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
10
 
@@ -23,6 +23,7 @@ llama_tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
23
  llama_model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2").to(device)
24
 
25
  # Define the function to find the most relevant document
 
26
  def retrieve_relevant_doc(query):
27
  query_embedding = model.encode(query, convert_to_tensor=True, device=device)
28
  similarities = util.pytorch_cos_sim(query_embedding, embeddings)[0]
@@ -30,6 +31,7 @@ def retrieve_relevant_doc(query):
30
  return df.iloc[best_match_idx]['Abstract']
31
 
32
  # Define the function to generate a response
 
33
  def generate_response(query):
34
  relevant_doc = retrieve_relevant_doc(query)
35
  input_text = f"Document: {relevant_doc}\n\nQuestion: {query}\n\nAnswer:"
 
4
  import gradio as gr
5
  import json
6
  from transformers import AutoTokenizer, AutoModelForCausalLM
7
+ import spaces
8
  # Ensure you have GPU support
9
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
10
 
 
23
  llama_model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2").to(device)
24
 
25
  # Define the function to find the most relevant document
26
+ @spaces.GPU(duration=120)
27
  def retrieve_relevant_doc(query):
28
  query_embedding = model.encode(query, convert_to_tensor=True, device=device)
29
  similarities = util.pytorch_cos_sim(query_embedding, embeddings)[0]
 
31
  return df.iloc[best_match_idx]['Abstract']
32
 
33
  # Define the function to generate a response
34
+ @spaces.GPU(duration=120)
35
  def generate_response(query):
36
  relevant_doc = retrieve_relevant_doc(query)
37
  input_text = f"Document: {relevant_doc}\n\nQuestion: {query}\n\nAnswer:"