Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -16,75 +16,75 @@ def safe_json_loads(x):
|
|
16 |
return np.array(json.loads(x))
|
17 |
except json.JSONDecodeError as e:
|
18 |
print(f"Error decoding JSON: {e}")
|
19 |
-
return np.
|
20 |
|
21 |
# Apply the safe_json_loads function to the embedding column
|
22 |
data['embedding'] = data['embedding'].apply(safe_json_loads)
|
23 |
|
24 |
# Filter out any rows with empty embeddings
|
25 |
-
data = data[data['embedding'].apply(lambda x: x
|
26 |
|
27 |
# Check if the DataFrame is empty after filtering
|
28 |
if data.empty:
|
29 |
-
|
30 |
-
|
31 |
-
# Initialize FAISS index
|
32 |
-
dimension = len(data['embedding'].iloc[0])
|
33 |
-
res = faiss.StandardGpuResources() # use a single GPU
|
34 |
-
|
35 |
-
# Check available GPU devices
|
36 |
-
num_gpus = faiss.get_num_gpus()
|
37 |
-
if num_gpus > 0:
|
38 |
-
gpu_index = faiss.IndexFlatL2(dimension)
|
39 |
-
gpu_index = faiss.index_cpu_to_gpu(res, 0, gpu_index) # move to GPU
|
40 |
else:
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
gpu_index.add(np.stack(data['embedding'].values))
|
44 |
|
45 |
-
# Check if GPU is available
|
46 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
47 |
|
48 |
-
# Load QA model
|
49 |
-
qa_model = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad", device=0 if torch.cuda.is_available() else -1)
|
50 |
|
51 |
-
# Load BERT model and tokenizer
|
52 |
-
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
53 |
-
model = BertModel.from_pretrained('bert-base-uncased').to(device)
|
54 |
|
55 |
-
# Function to embed the question using BERT
|
56 |
-
def embed_question(question, model, tokenizer):
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
|
62 |
-
# Function to retrieve the relevant document and generate a response
|
63 |
-
@spaces.GPU(duration=120)
|
64 |
-
def retrieve_and_generate(question):
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
|
80 |
-
# Create a Gradio interface
|
81 |
-
interface = gr.Interface(
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
)
|
88 |
|
89 |
-
# Launch the Gradio app
|
90 |
-
interface.launch()
|
|
|
16 |
return np.array(json.loads(x))
|
17 |
except json.JSONDecodeError as e:
|
18 |
print(f"Error decoding JSON: {e}")
|
19 |
+
return np.zeros(128) # Return a default array of zeros
|
20 |
|
21 |
# Apply the safe_json_loads function to the embedding column
|
22 |
data['embedding'] = data['embedding'].apply(safe_json_loads)
|
23 |
|
24 |
# Filter out any rows with empty embeddings
|
25 |
+
data = data[data['embedding'].apply(lambda x: x is not None and len(x) > 0)]
|
26 |
|
27 |
# Check if the DataFrame is empty after filtering
|
28 |
if data.empty:
|
29 |
+
print("No valid embeddings found in the data. Using default values.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
else:
|
31 |
+
# Initialize FAISS index
|
32 |
+
dimension = len(data['embedding'].iloc[0])
|
33 |
+
res = faiss.StandardGpuResources() # use a single GPU
|
34 |
+
|
35 |
+
# Check available GPU devices
|
36 |
+
num_gpus = faiss.get_num_gpus()
|
37 |
+
if num_gpus > 0:
|
38 |
+
gpu_index = faiss.IndexFlatL2(dimension)
|
39 |
+
gpu_index = faiss.index_cpu_to_gpu(res, 0, gpu_index) # move to GPU
|
40 |
+
else:
|
41 |
+
raise RuntimeError("No GPU devices available.")
|
42 |
|
43 |
+
gpu_index.add(np.stack(data['embedding'].values))
|
44 |
|
45 |
+
# Check if GPU is available
|
46 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
47 |
|
48 |
+
# Load QA model
|
49 |
+
qa_model = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad", device=0 if torch.cuda.is_available() else -1)
|
50 |
|
51 |
+
# Load BERT model and tokenizer
|
52 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
53 |
+
model = BertModel.from_pretrained('bert-base-uncased').to(device)
|
54 |
|
55 |
+
# Function to embed the question using BERT
|
56 |
+
def embed_question(question, model, tokenizer):
|
57 |
+
inputs = tokenizer(question, return_tensors='pt').to(device)
|
58 |
+
with torch.no_grad():
|
59 |
+
outputs = model(**inputs)
|
60 |
+
return outputs.last_hidden_state.mean(dim=1).cpu().numpy()
|
61 |
|
62 |
+
# Function to retrieve the relevant document and generate a response
|
63 |
+
@spaces.GPU(duration=120)
|
64 |
+
def retrieve_and_generate(question):
|
65 |
+
# Embed the question
|
66 |
+
question_embedding = embed_question(question, model, tokenizer)
|
67 |
+
|
68 |
+
# Search in FAISS index
|
69 |
+
_, indices = gpu_index.search(question_embedding, k=1)
|
70 |
+
|
71 |
+
# Retrieve the most relevant document
|
72 |
+
relevant_doc = data.iloc[indices[0][0]]
|
73 |
+
|
74 |
+
# Use the QA model to generate the answer
|
75 |
+
context = relevant_doc['Abstract']
|
76 |
+
response = qa_model(question=question, context=context)
|
77 |
+
|
78 |
+
return response['answer']
|
79 |
|
80 |
+
# Create a Gradio interface
|
81 |
+
interface = gr.Interface(
|
82 |
+
fn=retrieve_and_generate,
|
83 |
+
inputs=gr.Textbox(lines=2, placeholder="Ask a question about the documents..."),
|
84 |
+
outputs="text",
|
85 |
+
title="RAG Chatbot",
|
86 |
+
description="Ask questions about the documents in the CSV file."
|
87 |
+
)
|
88 |
|
89 |
+
# Launch the Gradio app
|
90 |
+
interface.launch()
|