Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,12 @@
|
|
1 |
import pandas as pd
|
2 |
import torch
|
3 |
from sentence_transformers import SentenceTransformer, util
|
|
|
4 |
import gradio as gr
|
5 |
import json
|
6 |
-
|
7 |
import spaces
|
|
|
8 |
# Ensure you have GPU support
|
9 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
10 |
|
@@ -12,41 +14,48 @@ device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
12 |
df = pd.read_csv('RBDx10kstats.csv')
|
13 |
df['embedding'] = df['embedding'].apply(json.loads) # Convert JSON string back to list
|
14 |
|
15 |
-
# Convert embeddings to
|
16 |
-
embeddings =
|
|
|
|
|
|
|
|
|
17 |
|
18 |
# Load the Sentence Transformer model
|
19 |
-
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
# Load the
|
22 |
-
|
23 |
-
ai_model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2-large").to(device)
|
24 |
|
25 |
-
# Define the function to find the most relevant document
|
26 |
-
@spaces.GPU(duration=120)
|
27 |
def retrieve_relevant_doc(query):
|
28 |
-
query_embedding =
|
29 |
-
|
30 |
-
best_match_idx =
|
31 |
return df.iloc[best_match_idx]['Abstract']
|
32 |
|
33 |
# Define the function to generate a response
|
34 |
-
@spaces.GPU(duration=120)
|
35 |
def generate_response(query):
|
36 |
relevant_doc = retrieve_relevant_doc(query)
|
|
|
|
|
37 |
input_text = f"Document: {relevant_doc}\n\nQuestion: {query}\n\nAnswer:"
|
38 |
-
inputs =
|
39 |
-
outputs =
|
40 |
-
response =
|
41 |
return response
|
42 |
|
43 |
# Create a Gradio interface
|
44 |
iface = gr.Interface(
|
45 |
fn=generate_response,
|
46 |
-
inputs=gr.Textbox(lines=2, placeholder="Enter your query here..."),
|
47 |
outputs="text",
|
48 |
title="RAG Chatbot",
|
49 |
-
description="This chatbot retrieves relevant documents based on your query and generates responses using
|
50 |
)
|
51 |
|
52 |
# Launch the Gradio interface
|
|
|
1 |
import pandas as pd
|
2 |
import torch
|
3 |
from sentence_transformers import SentenceTransformer, util
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
5 |
import gradio as gr
|
6 |
import json
|
7 |
+
import faiss
|
8 |
import spaces
|
9 |
+
|
10 |
# Ensure you have GPU support
|
11 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
12 |
|
|
|
14 |
df = pd.read_csv('RBDx10kstats.csv')
|
15 |
df['embedding'] = df['embedding'].apply(json.loads) # Convert JSON string back to list
|
16 |
|
17 |
+
# Convert embeddings to a numpy array
|
18 |
+
embeddings = np.array(df['embedding'].tolist(), dtype='float32')
|
19 |
+
|
20 |
+
# Setup FAISS
|
21 |
+
index = faiss.IndexFlatL2(embeddings.shape[1]) # dimension should match the embedding size
|
22 |
+
index.add(embeddings)
|
23 |
|
24 |
# Load the Sentence Transformer model
|
25 |
+
sentence_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2', device=device)
|
26 |
+
|
27 |
+
# Load the LLaMA model for response generation
|
28 |
+
llama_tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
|
29 |
+
llama_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf").to(device)
|
30 |
|
31 |
+
# Load the summarization model
|
32 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=0 if device == 'cuda' else -1)
|
|
|
33 |
|
34 |
+
# Define the function to find the most relevant document using FAISS
|
|
|
35 |
def retrieve_relevant_doc(query):
|
36 |
+
query_embedding = sentence_model.encode(query, convert_to_tensor=False)
|
37 |
+
_, indices = index.search(np.array([query_embedding]), k=1)
|
38 |
+
best_match_idx = indices[0][0]
|
39 |
return df.iloc[best_match_idx]['Abstract']
|
40 |
|
41 |
# Define the function to generate a response
|
|
|
42 |
def generate_response(query):
|
43 |
relevant_doc = retrieve_relevant_doc(query)
|
44 |
+
if len(relevant_doc) > 512: # Truncate long documents
|
45 |
+
relevant_doc = summarizer(relevant_doc, max_length=150, min_length=50, do_sample=False)[0]['summary_text']
|
46 |
input_text = f"Document: {relevant_doc}\n\nQuestion: {query}\n\nAnswer:"
|
47 |
+
inputs = llama_tokenizer(input_text, return_tensors="pt").to(device)
|
48 |
+
outputs = llama_model.generate(inputs["input_ids"], max_length=150)
|
49 |
+
response = llama_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
50 |
return response
|
51 |
|
52 |
# Create a Gradio interface
|
53 |
iface = gr.Interface(
|
54 |
fn=generate_response,
|
55 |
+
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your query here..."),
|
56 |
outputs="text",
|
57 |
title="RAG Chatbot",
|
58 |
+
description="This chatbot retrieves relevant documents based on your query and generates responses using LLaMA."
|
59 |
)
|
60 |
|
61 |
# Launch the Gradio interface
|