Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -13,10 +13,10 @@ data = pd.read_csv('RBDx10kstats.csv')
|
|
13 |
# Function to safely convert JSON strings to numpy arrays
|
14 |
def safe_json_loads(x):
|
15 |
try:
|
16 |
-
return np.array(json.loads(x))
|
17 |
except json.JSONDecodeError as e:
|
18 |
print(f"Error decoding JSON: {e}")
|
19 |
-
return np.array([]) # Return an empty array or handle it as appropriate
|
20 |
|
21 |
# Apply the safe_json_loads function to the embedding column
|
22 |
data['embedding'] = data['embedding'].apply(safe_json_loads)
|
@@ -25,7 +25,7 @@ data['embedding'] = data['embedding'].apply(safe_json_loads)
|
|
25 |
data = data[data['embedding'].apply(lambda x: x.size > 0)]
|
26 |
|
27 |
# Initialize FAISS index
|
28 |
-
dimension = len(data['embedding'][0])
|
29 |
res = faiss.StandardGpuResources() # use a single GPU
|
30 |
|
31 |
# Create FAISS index
|
@@ -35,7 +35,9 @@ if faiss.get_num_gpus() > 0:
|
|
35 |
else:
|
36 |
gpu_index = faiss.IndexFlatL2(dimension) # fall back to CPU
|
37 |
|
38 |
-
|
|
|
|
|
39 |
|
40 |
# Check if GPU is available
|
41 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
@@ -52,7 +54,7 @@ def embed_question(question, model, tokenizer):
|
|
52 |
inputs = tokenizer(question, return_tensors='pt').to(device)
|
53 |
with torch.no_grad():
|
54 |
outputs = model(**inputs)
|
55 |
-
return outputs.last_hidden_state.mean(dim=1).cpu().numpy()
|
56 |
|
57 |
# Function to retrieve the relevant document and generate a response
|
58 |
@spaces.GPU(duration=120)
|
|
|
13 |
# Function to safely convert JSON strings to numpy arrays
|
14 |
def safe_json_loads(x):
|
15 |
try:
|
16 |
+
return np.array(json.loads(x), dtype=np.float32) # Ensure the array is of type float32
|
17 |
except json.JSONDecodeError as e:
|
18 |
print(f"Error decoding JSON: {e}")
|
19 |
+
return np.array([], dtype=np.float32) # Return an empty array or handle it as appropriate
|
20 |
|
21 |
# Apply the safe_json_loads function to the embedding column
|
22 |
data['embedding'] = data['embedding'].apply(safe_json_loads)
|
|
|
25 |
data = data[data['embedding'].apply(lambda x: x.size > 0)]
|
26 |
|
27 |
# Initialize FAISS index
|
28 |
+
dimension = len(data['embedding'].iloc[0])
|
29 |
res = faiss.StandardGpuResources() # use a single GPU
|
30 |
|
31 |
# Create FAISS index
|
|
|
35 |
else:
|
36 |
gpu_index = faiss.IndexFlatL2(dimension) # fall back to CPU
|
37 |
|
38 |
+
# Ensure embeddings are stacked as float32
|
39 |
+
embeddings = np.vstack(data['embedding'].values).astype(np.float32)
|
40 |
+
gpu_index.add(embeddings)
|
41 |
|
42 |
# Check if GPU is available
|
43 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
54 |
inputs = tokenizer(question, return_tensors='pt').to(device)
|
55 |
with torch.no_grad():
|
56 |
outputs = model(**inputs)
|
57 |
+
return outputs.last_hidden_state.mean(dim=1).cpu().numpy().astype(np.float32)
|
58 |
|
59 |
# Function to retrieve the relevant document and generate a response
|
60 |
@spaces.GPU(duration=120)
|