Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,156 +1,32 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
from
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
# Apply the function to ensure embeddings are 2-dimensional and of type float32
|
31 |
-
data = data.map(convert_and_ensure_2d_embeddings)
|
32 |
-
|
33 |
-
# Flatten embeddings if they are nested 2D arrays
|
34 |
-
def flatten_embeddings(example):
|
35 |
-
embedding = np.array(example['embedding'], dtype=np.float32)
|
36 |
-
if embedding.ndim == 2 and embedding.shape[0] == 1:
|
37 |
-
embedding = embedding.flatten()
|
38 |
-
return {'embedding': embedding}
|
39 |
-
|
40 |
-
data = data.map(flatten_embeddings)
|
41 |
-
|
42 |
-
# Extract embeddings and convert to numpy array
|
43 |
-
embeddings = np.vstack([example['embedding'] for example in data])
|
44 |
-
|
45 |
-
# Add FAISS index
|
46 |
-
data = data.add_faiss_index_from_external_arrays("embedding", embeddings)
|
47 |
-
|
48 |
-
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
49 |
-
|
50 |
-
# Use quantization to lower GPU usage
|
51 |
-
bnb_config = BitsAndBytesConfig(
|
52 |
-
load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16
|
53 |
-
)
|
54 |
-
|
55 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id, token=token)
|
56 |
-
model = AutoModelForCausalLM.from_pretrained(
|
57 |
-
model_id,
|
58 |
-
torch_dtype=torch.bfloat16,
|
59 |
-
device_map="auto",
|
60 |
-
quantization_config=bnb_config,
|
61 |
-
token=token
|
62 |
)
|
63 |
-
terminators = [
|
64 |
-
tokenizer.eos_token_id,
|
65 |
-
tokenizer.convert_tokens_to_ids("")
|
66 |
-
]
|
67 |
-
|
68 |
-
SYS_PROMPT = """You are an assistant for answering questions.
|
69 |
-
You are given the extracted parts of a long document and a question. Provide a conversational answer.
|
70 |
-
If you don't know the answer, just say "I do not know." Don't make up an answer."""
|
71 |
-
|
72 |
-
def search(query: str, k: int = 3):
|
73 |
-
"""A function that embeds a new query and returns the most probable results."""
|
74 |
-
embedded_query = ST.encode(query) # Embed new query
|
75 |
-
scores, retrieved_examples = data.get_nearest_examples( # Retrieve results
|
76 |
-
"embedding", embedded_query, # Compare our new embedded query with the dataset embeddings
|
77 |
-
k=k # Get only top k results
|
78 |
-
)
|
79 |
-
return scores, retrieved_examples
|
80 |
-
|
81 |
-
def format_prompt(prompt, retrieved_documents, k):
|
82 |
-
"""Using the retrieved documents we will prompt the model to generate our responses."""
|
83 |
-
PROMPT = f"Question:{prompt}\nContext:"
|
84 |
-
for idx in range(k):
|
85 |
-
PROMPT += f"{retrieved_documents['text'][idx]}\n"
|
86 |
-
return PROMPT
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
k = 1 # Number of retrieved documents
|
91 |
-
scores, retrieved_documents = search(prompt, k)
|
92 |
-
formatted_prompt = format_prompt(prompt, retrieved_documents, k)
|
93 |
-
formatted_prompt = formatted_prompt[:2000] # To avoid GPU OOM
|
94 |
-
messages = [{"role": "system", "content": SYS_PROMPT}, {"role": "user", "content": formatted_prompt}]
|
95 |
-
# Tell the model to generate
|
96 |
-
input_ids = tokenizer.apply_chat_template(
|
97 |
-
messages,
|
98 |
-
add_generation_prompt=True,
|
99 |
-
return_tensors="pt"
|
100 |
-
).to(model.device)
|
101 |
-
outputs = model.generate(
|
102 |
-
input_ids,
|
103 |
-
max_new_tokens=1024,
|
104 |
-
eos_token_id=terminators,
|
105 |
-
do_sample=True,
|
106 |
-
temperature=0.6,
|
107 |
-
top_p=0.9,
|
108 |
-
)
|
109 |
-
streamer = TextIteratorStreamer(
|
110 |
-
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
|
111 |
-
)
|
112 |
-
generate_kwargs = dict(
|
113 |
-
input_ids=input_ids,
|
114 |
-
streamer=streamer,
|
115 |
-
max_new_tokens=1024,
|
116 |
-
do_sample=True,
|
117 |
-
top_p=0.95,
|
118 |
-
temperature=0.75,
|
119 |
-
eos_token_id=terminators,
|
120 |
-
)
|
121 |
-
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
122 |
-
t.start()
|
123 |
-
|
124 |
-
outputs = []
|
125 |
-
for text in streamer:
|
126 |
-
outputs.append(text)
|
127 |
-
print(outputs)
|
128 |
-
yield "".join(outputs)
|
129 |
-
|
130 |
-
TITLE = "# RAG"
|
131 |
-
|
132 |
-
DESCRIPTION = """
|
133 |
-
A RAG pipeline with a chatbot feature
|
134 |
-
Resources used to build this project:
|
135 |
-
* Embedding model: https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1
|
136 |
-
* Dataset: https://huggingface.co/datasets/not-lain/wikipedia
|
137 |
-
* FAISS docs: https://huggingface.co/docs/datasets/v2.18.0/en/package_reference/main_classes#datasets.Dataset.add_faiss_index
|
138 |
-
* Chatbot: https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
|
139 |
-
"""
|
140 |
-
|
141 |
-
demo = gr.ChatInterface(
|
142 |
-
fn=talk,
|
143 |
-
chatbot=gr.Chatbot(
|
144 |
-
show_label=True,
|
145 |
-
show_share_button=True,
|
146 |
-
show_copy_button=True,
|
147 |
-
likeable=True,
|
148 |
-
layout="bubble",
|
149 |
-
bubble_full_width=False,
|
150 |
-
),
|
151 |
-
theme="Soft",
|
152 |
-
examples=[["what's anarchy?"]],
|
153 |
-
title=TITLE,
|
154 |
-
description=DESCRIPTION,
|
155 |
-
)
|
156 |
-
demo.launch(debug=True)
|
|
|
1 |
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
from transformers import pipeline
|
4 |
+
|
5 |
+
# Load CSV data
|
6 |
+
data = pd.read_csv('documents.csv')
|
7 |
+
|
8 |
+
# Load a transformer model (you can choose a suitable model from Hugging Face)
|
9 |
+
# For this example, we'll use a simple QA model
|
10 |
+
qa_model = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
|
11 |
+
|
12 |
+
# Function to retrieve the relevant document and generate a response
|
13 |
+
def retrieve_and_generate(question):
|
14 |
+
# Combine all abstracts into a single string (you can improve this by better retrieval methods)
|
15 |
+
abstracts = " ".join(data['Abstract'].fillna("").tolist())
|
16 |
+
|
17 |
+
# Retrieve the most relevant section from the combined abstracts
|
18 |
+
response = qa_model(question=question, context=abstracts)
|
19 |
+
|
20 |
+
return response['answer']
|
21 |
+
|
22 |
+
# Create a Gradio interface
|
23 |
+
interface = gr.Interface(
|
24 |
+
fn=retrieve_and_generate,
|
25 |
+
inputs=gr.inputs.Textbox(lines=2, placeholder="Ask a question about the documents..."),
|
26 |
+
outputs="text",
|
27 |
+
title="RAG Chatbot",
|
28 |
+
description="Ask questions about the documents in the CSV file."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
# Launch the Gradio app
|
32 |
+
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|